Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Detecting binocular 3D motion in static 3D noise: no effect of viewing distance

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Spatial Vision
For more content, see Multisensory Research and Seeing and Perceiving.

Relative binocular disparity cannot tell us the absolute 3D shape of an object, nor the 3D trajectory of its motion, unless the visual system has independent access to how far away the object is at any moment. Indeed, as the viewing distance is changed, the same disparate retinal motions will correspond to very different real 3D trajectories. In this paper we were interested in whether binocular 3D motion detection is affected by viewing distance. A visual search task was used, in which the observer is asked to detect a target dot, moving in 3D, amidst 3D stationary distractor dots. We found that distance does not affect detection performance. Motion-in-depth is consistently harder to detect than the equivalent lateral motion, for all viewing distances. For a constant retinal motion with both lateral and motion-in-depth components, detection performance is constant despite variations in viewing distance that produce large changes in the direction of the 3D trajectory. We conclude that binocular 3D motion detection relies on retinal, not absolute, visual signals.

Affiliations: 1: Department of Psychology, Ridley Building, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Spatial Vision — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation