Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Shading and texture: separate information channels with a common adaptation mechanism?

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Spatial Vision
For more content, see Multisensory Research and Seeing and Perceiving.

We outline a scheme for the way in which early vision may handle information about shading (luminance modulation, LM) and texture (contrast modulation, CM). Previous work on the detection of gratings has found no sub-threshold summation, and no cross-adaptation, between LM and CM patterns. This strongly implied separate channels for the detection of LM and CM structure. However, we now report experiments in which adapting to LM (or CM) gratings creates tilt aftereffects of similar magnitude on both LM and CM test gratings, and reduces the perceived strength (modulation depth) of LM and CM gratings to a similar extent. This transfer of aftereffects between LM and CM might suggest a second stage of processing at which LM and CM information is integrated. The nature of this integration, however, is unclear and several simple predictions are not fulfilled. Firstly, one might expect the integration stage to lose identity information about whether the pattern was LM or CM. We show instead that the identity of barely detectable LM and CM patterns is not lost. Secondly, when LM and CM gratings are combined in-phase or out-of-phase we find no evidence for cancellation, nor for 'phase-blindness'. These results suggest that information about LM and CM is not pooled or merged—shading is not confused with texture variation. We suggest that LM and CM signals are carried by separate channels, but they share a common adaptation mechanism that accounts for the almost complete transfer of perceptual aftereffects.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Spatial Vision — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation