Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Comparison of sensitivity to first- and second-order local motion in 5-year-olds and adults

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Spatial Vision
For more content, see Multisensory Research and Seeing and Perceiving.

We compared sensitivity to first- versus second-order motion in 5-year-olds and adults tested with stimuli moving at slower (1.5° s-1) and faster (6° s-1) velocities. Amplitude modulation thresholds were measured for the discrimination of the direction of motion (up vs. down) for luminance-modulated (first-order) and contrast-modulated (second-order) horizontal sine-wave gratings. At the slower velocity (1.5° s-1), the differences in threshold between 5-year-olds and adults were small but significant for both first- and second-order stimuli (0.02 and 0.05 log units worse than adults' thresholds, respectively). However, at the faster velocity (6° s-1), the differences in threshold between the children and adults were 8 times greater for second-order motion than for first-order motion. Specifically, children's thresholds were 0.16 log units worse than those of adults for second-order motion compared to only 0.02 log units worse for first-order motion. The different pattern of results for first-order and second-order motion at the faster velocity (6° s-1) is consistent with models positing different mechanisms for the two types of motion and suggests that those mechanisms mature at different rates.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Spatial Vision — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation