Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Stopping rules in Bayesian adaptive threshold estimation

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Spatial Vision
For more content, see Multisensory Research and Seeing and Perceiving.

Threshold estimation with sequential procedures is justifiable on the surmise that the index used in the so-called dynamic stopping rule has diagnostic value for identifying when an accurate estimate has been obtained. The performance of five types of Bayesian sequential procedure was compared here to that of an analogous fixed-length procedure. Indices for use in sequential procedures were: (1) the width of the Bayesian probability interval, (2) the posterior standard deviation, (3) the absolute change, (4) the average change, and (5) the number of sign fluctuations. A simulation study was carried out to evaluate which index renders estimates with less bias and smaller standard error at lower cost (i.e. lower average number of trials to completion), in both yes–no and two-alternative forced-choice (2AFC) tasks. We also considered the effect of the form and parameters of the psychometric function and its similarity with the model function assumed in the procedure. Our results show that sequential procedures do not outperform fixed-length procedures in yes–no tasks. However, in 2AFC tasks, sequential procedures not based on sign fluctuations all yield minimally better estimates than fixed-length procedures, although most of the improvement occurs with short runs that render undependable estimates and the differences vanish when the procedures run for a number of trials (around 70) that ensures dependability. Thus, none of the indices considered here (some of which are widespread) has the diagnostic value that would justify its use. In addition, difficulties of implementation make sequential procedures unfit as alternatives to fixed-length procedures.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Spatial Vision — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation