Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Chromatic collinear facilitation, further evidence for chromatic form perception

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Spatial Vision
For more content, see Multisensory Research and Seeing and Perceiving.

Collinear facilitation of contrast detection of achromatic stimuli has been studied over the past decade by different groups. We measured collinear facilitation of chromatic contrast detection under equal-luminance (photometric quantity) and under isoluminance (minimum motion technique) conditions, as two different controls. The facilitation was tested for chromatic contrast detection of a foveal Gabor signal flanked by two high chromatic-contrast Gabor signals. The results indicated a significant facilitation in the presence of spatial adjacent collinear chromatic contrast signals, when the flankers were located at a short distance, across all observers for three chromatic channels. The facilitation was compared to a non-collinear flanker configuration. The results indicated no facilitation effect at the opposing phase configuration, at a short flanker distance, whereas a small facilitation was observed with a configuration at a longer flanker distance. The findings suggest that the performance and specificity of chromatic collinear facilitation is not impaired with regard to achromatic mechanisms.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Spatial Vision — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation