Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Perceptual distance and the moon illusion

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

For more content, see Multisensory Research and Seeing and Perceiving.

The elevated moon usually appears smaller than the horizon moon of equal angular size. This is the moon illusion. Distance cues may enable the perceptual system to place the horizon moon at an effectively greater distance than the elevated moon, thus making it appear as larger. This explanation is related to the size-distance invariance hypothesis. However, the larger horizon moon is usually judged as closer than the smaller zenith moon. A bias to expect an apparently large object to be closer than a smaller object may account for this conflict. We designed experiments to determine if unbiased sensitivity to illusory differences in the size and distance of the moon (as measured by d′) is consistent with SDIH. A moon above a 'terrain' was compared in both distance and size to an infinitely distant moon in empty space (the reduction moon). At a short distance the terrain moon was adjudged as both closer and smaller than the reduction moon. But these differences could not be detected at somewhat greater distances. At still greater distances the terrain moon was perceived as both more distant and larger than the reduction moon. The distances at which these transitions occurred were essentially the same for both distance and size discrimination tasks, thus supporting SDIH.

10.1163/156856807779369698
/content/journals/10.1163/156856807779369698
dcterms_title,pub_keyword,dcterms_description,pub_author
6
3
Loading
Loading

Full text loading...

/content/journals/10.1163/156856807779369698
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/156856807779369698
Loading

Article metrics loading...

/content/journals/10.1163/156856807779369698
2007-01-01
2016-12-10

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Spatial Vision — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation