Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Fractal-like image statistics in visual art: similarity to natural scenes

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Spatial Vision
For more content, see Multisensory Research and Seeing and Perceiving.

Both natural scenes and visual art are often perceived as esthetically pleasing. It is therefore conceivable that the two types of visual stimuli share statistical properties. For example, natural scenes display a Fourier power spectrum that tends to fall with spatial frequency according to a power-law. This result indicates that natural scenes have fractal-like, scale-invariant properties. In the present study, we asked whether visual art displays similar statistical properties by measuring their Fourier power spectra. Our analysis was restricted to graphic art from the Western hemisphere. For comparison, we also analyzed images, which generally display relatively low or no esthetic quality (household and laboratory objects, parts of plants, and scientific illustrations). Graphic art, but not the other image categories, resembles natural scenes in showing fractal-like, scale-invariant statistics. This property is universal in our sample of graphic art; it is independent of cultural variables, such as century and country of origin, techniques used or subject matter. We speculate that both graphic art and natural scenes share statistical properties because visual art is adapted to the structure of the visual system which, in turn, is adapted to process optimally the image statistics of natural scenes.

Affiliations: 1: Institute of Anatomy I, School of Medicine, Friedrich Schiller University, D-07740 Jena, Germany; 2: Department of Computer Science, Friedrich Schiller University, D-07740 Jena, Germany


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Spatial Vision — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation