Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Corner salience varies linearly with corner angle during flicker-augmented contrast: a general principle of corner perception based on Vasarely's artworks

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Spatial Vision
For more content, see Multisensory Research and Seeing and Perceiving.

When corners are embedded in a luminance gradient, their perceived salience varies linearly with corner angle (Troncoso et al., 2005). Here we hypothesize that this relationship may hold true for all corners, not just corner gradients. To test this hypothesis, we developed a novel variant of the flicker-augmented contrast illusion (Anstis and Ho, 1998) that employs solid (non-gradient) corners of varying angles to modify perceived brightness. We flickered solid corners from dark to light grey (50% luminance over time) against a black or a white background. With this new stimulus, subjects compared the apparent brightness of corners, which did not vary in actual luminance, to non-illusory stimuli that varied in actual luminance.

We found that the apparent brightness of corners was linearly related to the sharpness of corner angle. Thus this relationship is not solely an effect of corners embedded in gradients, but may be a general principle of corner perception. These findings may have important repercussions for brain mechanisms underlying the early visual processing of shape and brightness.

A large fraction of Vasarely's art showcases the perceptual salience of corners, curvature and terminators. Several of these artworks and their implications for visual processing are discussed.

Affiliations: 1: Barrow Neurological Institute, 350 W Thomas Road, Phoenix, Arizona 85013, USA


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Spatial Vision — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation