Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The Gaussian derivative model for spatial vision: I. Retinal mechanisms

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Spatial Vision
For more content, see Multisensory Research and Seeing and Perceiving.

Physiological evidence is presented that visual receptive fields in the primate eye are shaped like the sum of a Gaussian function and its Laplacian. A new 'difference-of-offset-Gaussians' or DOOG neural mechanism was identified, which provided a plausible neural mechanism for generating such Gaussian derivative-like fields. The DOOG mechanism and the associated Gaussian derivative model provided a better approximation to the data than did the Gabor or other competing models. A model-free Wiener filter analysis provided independent confirmation of these results. A machine vision system was constructed to simulate human foveal retinal vision, based on Gaussian derivative filters. It provided edge and line enhancement (deblurring) and noise suppression, while retaining all the information in the original image.

Affiliations: 1: Computer Science Department, General Motors Research Laboratories, Warren, Michigan 48090-9055, USA


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Spatial Vision — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation