Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Simultaneous processing of spatial and chromatic components of patterned stimuli by the human visual system

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Spatial Vision
For more content, see Multisensory Research and Seeing and Perceiving.

We report measurements on discrimination of orientation and magnification made for elements differentiated in colour and/or luminance from their background. By performing measurements at a series of background luminances and for fixed luminance of the elements, we show that with colour contrast, discrimination for both spatial parameters is unimpaired when the background is at isoluminance with the elements. Under simple luminance contrast, however, these discriminations become poorer when the background luminance is within some ± 5% of that of the elements, and are completely absent when the two values are the same. A deuteranomalous subject is unable to make the spatial discriminations around the isoluminance point for colour contrasts which are too small for him to distinguish, but for which subjects with normal colour vision maintain spatial discriminations at isoluminance. This observation establishes that the physiological mechanisms of normal colour vision, rather than stimulus artefacts, mediate the observed spatial discriminations. We conclude that the visual processing of colour and spatial parameters such as orientation and magnification are intrinsically related to each other.

Affiliations: 1: Department of Physics (Biophysics), Imperial College, London, SW72BZ, UK


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Spatial Vision — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation