Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Some results on translation invariance in the human visual system

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Spatial Vision
For more content, see Multisensory Research and Seeing and Perceiving.

Four experiments were conducted to study the nature of visual translation invariance in humans. In all the experiments, subjects were trained to discriminate between a previously unknown target and two non-target distractors presented at a fixed retinal location to one side of the fixation point. In a subsequent test phase, this performance was compared with the performance when the patterns were presented either centrally at the fixation point or at a location on the other side of the fixation point, opposite to the location where the patterns were learned, but where acuity was identical to what it was at the learned location. Two different experimental paradigms were used. One used an eye movement control device (Experiment 1) to ensure the eye could not move relative to the patterns to be learned. In the other three experiments, presentation duration of the patterns was restricted to a short enough period to preclude eye movements. During the training period in Experiments 1 and 2, presentation location of the patterns was centered at 2.4 deg in the periphery, whereas in Experiments 3 and 4 presentation eccentricity was reduced to 0.86 and 0.49 deg. In all four experiments performance dropped when the pattern had to be recognized at new test positions. This result suggests that the visual system does not apply a global transposition transformation to the retinal image to compensate for translations. We propose that, instead, it decomposes the image into simple features which themselves are more-or-less translation invariant. If in a given task, patterns can be discriminated using these simple features, then translation invariance will occur. If not, then translation invariance will fail or be incomplete.

Affiliations: 1: Groupe Regard, Laboratoire de Psychologie Expérimentale, CNRS, Université René Descartes, EPHE, EHESS, 28 rue Serpente, 75006 Paris, France


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Spatial Vision — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation