Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Directional performances with moving plaids: component-related and plaid-related processing modes coexist

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Spatial Vision
For more content, see Multisensory Research and Seeing and Perceiving.

A moving grating oriented ± 45° to the vertical can be perceived at choice as drifting along a left-right or up-down directional axis. When the drifting stimulus is presented alone, direction discrimination thresholds are independent of the specified response-axis. However, they strongly depend on it when the moving stimulus is superimposed on a vertical or horizontal stationary grating. Facilitation is always obtained when the drift direction of the intersections of the two gratings ('blobs') is collinear with the response-axis (i.e. when the orientations of the stationary grating and of the response-axis coincide), while inhibition is observed in the 'noncollinear' cases (i.e. when the orientations of the stationary grating and of the response-axis are orthogonal). These results are generalized in a series of reaction time (RT) experiments where the stimulus configuration described above was set at suprathreshold contrasts and where the orientation/direction of the drifting grating was variable. RT increased when the angle between the response-axis and the direction of the drifting grating increased (uncertainty effect), whether the test stimulus was presented alone, or superimposed on the stationary grating. The uncertainty effect was, however, significantly decreased under 'collinearity' conditions. The attenuation of the uncertainty effect was proportional with the velocity of the blobs and about equal in amount to the RT decrease obtained through the manipulation of the velocity of the drifting grating when presented alone (velocity effect). This observation strongly suggests that both component- and blob/plaid-related information contribute to the directional perception of a compound stimulus and that they sum algebraically.

Affiliations: 1: Laboratoire de Psychologie Experimentale, Université René Descartes et EHESS, associé au CNRS, 28 rue Serpente, 75006 Paris, France


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Spatial Vision — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation