Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Effect of bamboo foliage on soil respiration, microbial biomass and N mineralization

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

Microbial N, CO2 evolution rate and mineral-N dynamics were determined in soils collected beneath the canopy of two different bamboo species in a 9-year-old bamboo forest developed on an abandoned sloping agricultural land in a humid tropical zone of north-east India. A laboratory incubation study was set up to determine the dynamics of microbial biomass, soil respiration and N mineralization rates as influenced by addition of bamboo residues (leaves and scale leaves). Soil nutrients and microbial biomass C, N and P were greater in soils under Bambusa pallida as compared to B. balcooa. Lignin and N concentrations were greater in B. balcooa. Scale leaves had low lignin and N concentrations than the leaf litter. The litter quality, particularly lignin/N, influenced the dynamics of soil mineral-N and, therefore, on the net N mineralization rate. CO2 evolution rate in the soil had a negative relationship with the N mineralization rate, while the microbial N showed weaker correlations with the dynamics of the mineral N. Overall, amendments using the sclerophyllous and slow decomposing foliage did not contribute to the increasing N mineralization in the soils. The study also suggests that soil management practices in bamboo forests should take into account incorporation of residues of good quality, probably of other plant species, failing which, soil quality may deteriorate over a long term that would be critical in productivity and nutrient cycling of secondary bamboo forests regenerating on nutrient-poor, fragile and marginal fallow agricultural lands.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation