Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Strength properties and potential uses of rattan–cement composites

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

This Article is currently unavailable for purchase.
Add to Favorites
You must be logged in to use this functionality

Cover image Placeholder

Wood–cement particleboard (WCP) was produced from rattan (Laccosperma secundiflorum) particles. Contrary to conventional practice, the boards were fabricated in the laboratory without pressure application. The effects of rattan particle size and content on the density and bending and compressive strength properties of the boards were investigated. The boards were produced using two rattan particle sizes, i.e., those passing through a 0.85 mm sieve but retained on 0.6 mm sieve, and a 50 : 50 mixture (by weight) of particles retained on 1.2 mm and 0.85 mm sieves, three cement–rattan mixing ratios (by weight of cement) of 1 : 0.11, 1 : 0.19 and 1 : 0.25 respectively, i.e., rattan contents of 10, 15 and 20%. Board density ranged between 764 and 1340 kg/m3, indicating that the composite is a lightweight concrete. The mean modulus of elasticity (MOE = 130.2−2830.7 N/mm2) and modulus of rupture (MOR = 0.8 and 5.2 N/mm2) of the boards decreased with increasing rattan particle size and content. The mean compressive strength of boards (1.3−22.0 N/mm2) also decreased with decreasing board density. Cement–rattan mixing ratio, rattan particle size and the interaction of both variables had significant effects on the density, modulus of rupture and the compressive strength of the composites. The density and the compressive strength properties of the composites suggest that they could find suitable application in the production of insulation boards and bricks (with the addition of sand), for erection of bearing walls in low-rise buildings.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation