Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Flight muscles and flight dynamics: towards an integrative framework

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Animal Biology
For more content, see Archives Néerlandaises de Zoologie (Vol 1-17) and Netherlands Journal of Zoology (Vol 18-52).

Here a conceptual framework is provided for analysing the role of the flight muscles in stability and control. Stability usually refers to the tendency of a system to return to a characteristic reference state, whether static, as in gliding, or oscillatory, as in flapping. Asymptotic Lyapunov stability and asymptotic orbital stability as formal definitions of gliding and flapping flight stability, respectively, are discussed and a limit cycle control analogy for flapping flight control proposed. Stability can arise inherently or through correctional control. Conceptually, inherent stability is that which would arise if all body parts were rigid and all articulation angles were constants (gliding) or periodic functions (flapping), both of which require muscular effort. Pose can be maintained during disturbances by neural feedback or isometric contraction of tonic muscles: cyclic pose changes can be buffered by neural feedback or viscous damping by phasic muscles. Correctional control serves to drive the system towards its reference state, which will usually involve a phasic response, if only because of the tendency of flying bodies to oscillate during disturbances. Muscles involved in correctional control must therefore be tuned to the characteristic frequencies of the system. Furthermore, in manoeuvre control, these frequencies set an upper limit on the timescales on which control inputs can be effective. Flight muscle physiology should therefore be evolutionarily co-tuned with the morphological parameters of the system that determine its frequency response. Understanding this fully will require us to integrate internal models of physiology with external models of flight dynamics.

10.1163/1570756053276871
/content/journals/10.1163/1570756053276871
dcterms_title,pub_keyword,dcterms_description,pub_author
6
3
Loading
Loading

Full text loading...

/content/journals/10.1163/1570756053276871
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/1570756053276871
Loading

Article metrics loading...

/content/journals/10.1163/1570756053276871
2005-01-01
2016-12-07

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Animal Biology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation