Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Tinbergen's fourth question, ontogeny: sexual and individual differentiation

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Animal Biology

Based on Tinbergen's view of the study of behavioural development we describe some recent advances and their importance in this field. We argue that the study of behavioural development should combine both proximate and ultimate approaches, and can help to understand how early subtle environmental factors shape consistent individual variation both between and within sexes. This is illustrated by reviewing the profound effects of incubation temperature on the development of brain and social behaviour in the leopard gecko, a species with temperature-dependent sex determination, and the effects of early exposure to steroid hormones on social behaviour in rodents and especially birds. Both are maternal effects: incubation temperature can be partly determined by the nest site where the mother deposited her eggs, while in both oviparous and viviparous vertebrates maternal hormones reach and influence the embryo. In the gecko, incubation temperature affects sexual and aggressive behaviour, growth, the hypothalamus-pituitary-gonadal axis, as well as the size, connectivity and metabolic capacity of certain brain areas. In this way not only is the gonad type determined, but so too is the morphological, physiological, neural, and behavioural phenotype established that explains much of within-sex variation. In rodents, maternal hormones affect similar aspects. In avian species, maternal hormones, deposited in the eggs, vary systematically between and within clutches and have both short- and long-lasting effects on competitive behaviour. Evidence suggests that mothers adaptively adjust hormone allocation to the environmental context. In addition, we discuss some effects of postnatal experience on behavioural development in geckos, mice and bird species. Our results also illustrate how the study of animal models other than rodents can help in understanding important developmental processes.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Animal Biology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation