Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The Trabecula cranii: development and homology of an enigmatic vertebrate head structure

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Animal Biology
For more content, see Archives Néerlandaises de Zoologie (Vol 1-17) and Netherlands Journal of Zoology (Vol 18-52).

The vertebrate cranium consists of three parts: neuro-, viscero- and dermatocranium, which differ in both developmental and phylogenetic origin. Traditionally, developmental origin has been used as a criterion for homology, but this becomes problematic when skull elements such as the parietal bone are now shown, by modern fate-mapping studies, to have different developmental origins in different groups of tetrapods. This indicates a flexibility of developmental programmes and regulatory pathways which has probably been very important in cranial evolution. The trabecula cranii is an intriguing cranial element in the anterior cranial base in vertebrates. It forms a viscerocranial part of the neurocranium and is believed to be neural crest-derived in gnathostomes, but a similarly named structure in lampreys has been shown to have a mesodermal origin. Topographically, this trabecula seems to be homologous to the gnathostome trabecula cranii, and might also have the same function: to form a border between adjacent morphogenetic domains, to constrain and redirect growth of both brain and stomodeum and thus to refine developmental schedules of both. We suggest that such a border zone can recruit cells from either the mesoderm (as in the lamprey) or from the neural crest (as in the gnathostomes investigated), and still retain its homology. In our view, the trabecula is an interface element that integrates the respective divergent morphogenetics programs of the preotic head into a balanced unit; we suggest that such a definition can be used to define "the sameness" of this element throughout vertebrates.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Animal Biology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation