Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Spontaneous firing in primary afferent neurons of ampullary electroreceptor organs as attribute of bandwidth, threshold, and topology

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

Spontaneous firing of neurons plays an essential part in the detection of sensory stimuli. Spontaneous firing of primary afferents of ampullary electroreceptor organs in the catfish Ameiurus nebulosus (Lesueur, 1819) was studied in relation to the distribution, thresholds, and frequency characteristics of the electroreceptor organs.

The spontaneous firing rate was correlated with the place on the skin. The mean inter-spike interval in 55 dorsal and 49 ventral ampullary organs in five specimens was 16.8 ms +/- 0.41 SEM and 20.5 ms +/- 0.48 SEM, corresponding to firing rates of 59.5 and 48.7 s-1 respectively. The concomitant coefficients of variation were 0.33 and 0.29. Approximately half of the dorsal ampullae were innervated by two fibres. The firing rates of each of the two fibres was lower than the firing rate of organs innervated by a single neuron.

Responses to stimuli as weak as 10 pA could be recovered from the noisy average firing level provided the number of averaging sweeps was sufficiently large. This was equivalent to a stimulus of 0.025 μV/cm and was lower than the behavioural threshold of 1 μV/cm.

The gain of the frequency response was enhanced at the carrier frequency, at twice the carrier frequency, and in the range from 75-90 Hz.

The results revealed that the occurrence of spontaneous activity improved the signal to noise ratio of responses to electrical stimuli by reduction of the coefficient of variation, absence of a threshold, and phase locking.

Affiliations: 1: Functional Neurobiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;, Email:; 2: Functional Neurobiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Animal Biology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation