Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Alteration in the status of glutathione transferase of the water snail, Bulinus globosus, during aestivation and recovery

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Animal Biology

The varying status of glutathione transferases (GSTs) in water snail, Bulinus globosus, an intermediate host of disease-causing Schistosoma haematobium (Bilharz 1852) has been investigated. The expression of GST isoenzymes in the water snail appears seasonal with about three isoenzymes appearing during raining season, when the organism is active, which may reduce to a single peak of one isoenzyme during aestivation, when the organism is inactive. GST isoenzyme is present in high concentration in all the tissues investigated namely: haemolymph, foot muscle and hepatopancreas with specific activities of 0.006 ± 0.002, 0.45 ± 0.021 and 1.33 ± 0.103 units/mg protein respectively for 1-chloro-2,4-dinitrobenzene (CDNB) as substrate. With this substrate, the specific activity of GST from the hepatopancreas appears higher than the specific activities that have been previously reported for GSTs from molluscs. Partial purification of the isoenzymes using Tris acrylic acid-based resins enabled us to observe that GST appears to be the major protein in the hepatopancreas of this organism. We also found indications for the presence of an endogenous GST inhibitor in the cytosol, whose function is yet unknown. All the traditional GST inhibitors such as cibacron blue, hematin, bromosulfophthalein and S-hexylglutathione were able to inhibit the isoenzymes effectively, with cibacron blue being the most potent. The isoenzymes however have narrow substrate specificity. We conclude that different isoenzymes of GST are expressed in the same class of molluscs, even when they belong to the same genus or species, and that the expression may depend on whether the snails are on aestivation or not.

Affiliations: 1: Department of Biochemistry, Obafemi Awolowo University, Ile-Ife, Nigeria


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Animal Biology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation