Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Open Access Something gone awry: unsolved mysteries in the evolution of asymmetric animal genitalia

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Something gone awry: unsolved mysteries in the evolution of asymmetric animal genitalia

  • HTML
  • PDF
Add to Favorites
You must be logged in to use this functionality

image of Animal Biology
For more content, see Archives Néerlandaises de Zoologie (Vol 1-17) and Netherlands Journal of Zoology (Vol 18-52).

The great diversity in genital shape and function across and within the animal phyla hamper the identification of specific evolutionary trends that stretch beyond the limits of the group under study. Asymmetry might be a trait in genital morphology that could play a unifying role in the evolutionary biology of genitalia. Here, I review the current knowledge on the taxonomic distribution, phylogenetic patterns, genetics, development, and ecology of asymmetric (chiral) genitalia. Asymmetric genitalia (male as well as female) have evolved from bilaterally symmetric ones (and sometimes vice versa), innumerous times in most animal taxa with internal fertilisation, and especially in Platyhelminthes, Arthropoda, Nematoda, and Chordata. In groups with asymmetric genitalia, chiral reversal (where species carry genitalia that are the mirror image of those in other, congeneric, species) is common, but antisymmetry (both mirror images present within a species) is rare. Although indications exist that, at least in insects, asymmetry evolves as a compensatory response to the evolution of male-dominant mating positions, many mysteries remain. Main questions are: (i) is genital asymmetry developmental-genetically linked with other (visceral, external) asymmetries? (ii) is genital asymmetry usually correlated with a change in mating position? (iii) is asymmetry more likely to evolve in response to cryptic female choice or sexually-antagonistic coevolution? (iv) why is antisymmetry so rare and how does chiral reversal evolve? Based on an overview of the taxonomic patterns, I advocate a research program that makes use of the simple, binary nature of left-right asymmetry to test hypotheses for its evolution with experimental and comparative methods. I also provide tables with full or summarised data on (a) genital asymmetry across all animal phyla with internal fertilisation; (b) genera with dextral as well as sinistral species; (c) species with dextral as well as sinistral individuals; (d) genera with symmetric as well as asymmetric species; (e) species with symmetric as well as asymmetric individuals.

10.1163/15707563-00002398
/content/journals/10.1163/15707563-00002398
dcterms_title,pub_keyword,dcterms_description,pub_author
6
3
Loading
  • Schilthuizen Table S1
    • Publication Date : 11 October 2012
    • DOI : 10.1163/15707563-00002398-01
    • File Size: 92124
    • File format:application/pdf

The great diversity in genital shape and function across and within the animal phyla hamper the identification of specific evolutionary trends that stretch beyond the limits of the group under study. Asymmetry might be a trait in genital morphology that could play a unifying role in the evolutionary biology of genitalia. Here, I review the current knowledge on the taxonomic distribution, phylogenetic patterns, genetics, development, and ecology of asymmetric (chiral) genitalia. Asymmetric genitalia (male as well as female) have evolved from bilaterally symmetric ones (and sometimes vice versa), innumerous times in most animal taxa with internal fertilisation, and especially in Platyhelminthes, Arthropoda, Nematoda, and Chordata. In groups with asymmetric genitalia, chiral reversal (where species carry genitalia that are the mirror image of those in other, congeneric, species) is common, but antisymmetry (both mirror images present within a species) is rare. Although indications exist that, at least in insects, asymmetry evolves as a compensatory response to the evolution of male-dominant mating positions, many mysteries remain. Main questions are: (i) is genital asymmetry developmental-genetically linked with other (visceral, external) asymmetries? (ii) is genital asymmetry usually correlated with a change in mating position? (iii) is asymmetry more likely to evolve in response to cryptic female choice or sexually-antagonistic coevolution? (iv) why is antisymmetry so rare and how does chiral reversal evolve? Based on an overview of the taxonomic patterns, I advocate a research program that makes use of the simple, binary nature of left-right asymmetry to test hypotheses for its evolution with experimental and comparative methods. I also provide tables with full or summarised data on (a) genital asymmetry across all animal phyla with internal fertilisation; (b) genera with dextral as well as sinistral species; (c) species with dextral as well as sinistral individuals; (d) genera with symmetric as well as asymmetric species; (e) species with symmetric as well as asymmetric individuals.

Loading

Full text loading...

/deliver/15707563/63/1/15707563_063_01_S01_text.html;jsessionid=ARCpJj0JJqfJ-_faRtfzKOrz.x-brill-live-02?itemId=/content/journals/10.1163/15707563-00002398&mimeType=html&fmt=ahah
/content/journals/10.1163/15707563-00002398
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/15707563-00002398
Loading
Loading

Article metrics loading...

/content/journals/10.1163/15707563-00002398
2013-01-01
2016-12-08

Sign-in

Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation