Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The thermogenic and metabolic responses to photoperiod manipulations in Apodemus chevrieri

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Animal Biology

Environmental cues play important roles in the regulation of an animal’s physiology and behavior. In the present study, we examined the effects of short photoperiod on body weight as well as on several physiological, hormonal, and biochemical measures indicative of thermogenic capacity to test our hypothesis that short photoperiod stimulates increases in thermogenesis without cold stress in Apodemus chevrieri. A. chevrieri were randomly assigned to either a long or short photoperiod for 4 weeks at constant temperature. The short photoperiod group of A. chevrieri showed increases in resting metabolic rate and nonshivering thermogenesis during the 4-week photoperiod acclimation. At the end, A. chevrieri at short photoperiod had lower body weights, higher levels of mitochondrial protein content and cytochrome C oxidase activity in liver and brown adipose tissues, and had higher levels of mitochondrial uncoupling protein-1 contents in brown adipose tissues. No difference in serum leptin levels were found between short and long photoperiod groups, but serum leptin levels were positively correlated with body mass and body fat mass, and negatively correlated with energy intake and uncoupling protein-1 content in brown adipose tissues, respectively. All results suggest that the short photoperiod may induce an increased thermogenesis capacity in A. chevrieri and that leptin is potentially involved in the photoperiod induced body mass regulation and thermogenesis in A. chevrieri.

Affiliations: 1: School of Life Science of Yunnan Normal University, Kunming, 650500, China


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Animal Biology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation