Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Swimming of the pea crab (Pinnotheres pisum)

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Animal Biology
For more content, see Archives Néerlandaises de Zoologie (Vol 1-17) and Netherlands Journal of Zoology (Vol 18-52).

Aquatic organisms have to deal with different hydrodynamic regimes, depending on their size and speed during locomotion. The pea crab swims by beating the third and fourth pereiopod on opposite sides as pairs. Using particle tracking velocimetry and high-speed video recording, we quantify the kinematics and vortices in the wake of the pea crab. Where the proximal parts of the pereiopods beat in antiphase, their distal parts show an overlapping beat period. By using four instead of two limbs for propulsion, an uninterrupted forward movement is established, reducing the influence of the acceleration reaction. Before body speed is maximal, force generation of the pereiopods seems most active when passing an orthogonal position with the body.

10.1163/15707563-00002444
/content/journals/10.1163/15707563-00002444
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading

Full text loading...

/content/journals/10.1163/15707563-00002444
Loading

Data & Media loading...

1. Atkins D. ( 1926) "The moulting stages of the pea-crab ( Pinnotheres pisum)". J. Mar. Biol. Assoc. UK n. ser., Vol 4, 475- 493. http://dx.doi.org/10.1017/S0025315400007955
2. Atkins D. ( 1958) "British pea-crabs ( Pinnotheres)". Nature, Vol 181, 1087. http://dx.doi.org/10.1038/1811087a0
3. Blake R.W. ( 1986) "Hydrodynamics of swimming in the water boatman, Cenocorixa bifida ". Can. J. Zool., Vol 64, 1606- 1613. http://dx.doi.org/10.1139/z86-242
4. Catton K.B. , Webster D.R. , Brown J. , Yen J. ( 2007) "Quantitative analysis of tethered and free-swimming copepodid flow fields". J. Exp. Biol., Vol 210, 299- 310. http://dx.doi.org/10.1242/jeb.02633
5. Daniel T.L. ( 1984) "Unsteady aspects of aquatic locomotion". Am. Zool., Vol 24, 121- 134.
6. Ford M.D. , Schuegraf M.J. , Elkink M.S. , DeMont M.E. ( 2005) "A comparison of swimming structures and kinematics in three species of crustacean larvae". Mar. Freshw. Behav. Phy., Vol 38, 79- 94. http://dx.doi.org/10.1080/10236240500148934
7. Hartnoll R.G. ( 1972) "Swimming in the hard stage of the pea crab, Pinnotheres pisum(L.)". J. Nat. Hist., Vol 6, 475- 480. http://dx.doi.org/10.1080/00222937200770431
8. Hayward P. , Nelson-Smith A. , Shields C. ( 1996) Collins Pocket Guide to the Sea Shore of Britain and Europe. Harper Collins Publishers, London.
9. Hedrick T.L. ( 2008) "Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems". Bioinspir. Biomim., Vol 3, 034001. http://dx.doi.org/10.1088/1748-3182/3/3/034001
10. Hunt G. , Park L.E. , LaBarbera M. ( 2007) "A novel crustacean swimming stroke: coordinated four-paddled locomotion in the Cypridoidean Ostracode Cypridopsis vidua(Müller)". Biol. Bull., Vol 212, 67- 73. http://dx.doi.org/10.2307/25066581
11. Lord R.G. ( 1964) "The aerodynamic resistance to a rotating sphere in the transition regime between free molecule and continuum creep flow". Proc. R. Soc. A, Vol 279, 39- 49. http://dx.doi.org/10.1098/rspa.1964.0088
12. Meisch C. ( 2000) "Freshwater Ostracoda of Western and Central Europe". In: Schworbel J. , Zwick P. (Eds.) Süsswasserfauna von Mitteleuropa, pp.  522. Spektrum Akademischer Verlag, Heidelberg.
13. Morris M.J. , Kohlhage K. , Gust G. ( 1990) "Mechanics of swimming in the small copepod Acanthocyclops robustus(Cyclopoida)". Mar. Biol., Vol 107, 83- 91. http://dx.doi.org/10.1007/BF01313245
14. Murphy D.W. , Webster D.R. , Kawaguchi S. , King R. , Yen J. ( 2011) "Metachronal swimming in Antarctic krill: gait kinematics and system design". Mar. Biol., Vol 158, 2541- 2554. http://dx.doi.org/10.1007/s00227-011-1755-y
15. Nachtigall W. ( 1977) "Swimming mechanics and energetics of locomotion of variously sized water beetles – Dytiscidae, body length 2 to 35 mm". In: Pedley T.J. (Ed.) Scale Effects in Animal Locomotion, pp.  269- 283. Academic Press, London.
16. Nachtigall W. ( 1980) "Mechanics of swimming in water-beetles". In: Elder H.Y. , Trueman E.R. (Eds.) Aspects of Animal Movement, pp.  107- 124. Cambridge University Press, Cambridge.
17. Spedding G.R. , Rayner J.M.V. , Pennycuick C.J. ( 1984) "Momentum and energy in the wake of a pigeon ( Columba livia) in slow flight". J. Exp. Biol., Vol 111, 81- 102.
18. Stamhuis E.J. , Nauwelaerts S. ( 2005) "Propulsive force calculations in swimming frogs II. Application of a vortex ring model to DPIV data". J. Exp. Biol., Vol 208, 1445- 1451. http://dx.doi.org/10.1242/jeb.01530
19. Stamhuis E.J. , Videler J.J. ( 1995) "Quantitative flow analysis around aquatic animals using laser sheet particle image velocimetry". J. Exp. Biol., Vol 198, 283- 294.
20. Tytell E.D. , Lauder G.V. ( 2004) "The hydrodynamics of eel swimming I. Wake structure". J. Exp. Biol., Vol 207, 1825- 1841. http://dx.doi.org/10.1242/jeb.00968
21. Videler J.J. , Stamhuis E.J. , Müller U.K. , van Duren L.A. ( 2002) "The scaling and structure of aquatic animal wakes". Integr. Comp. Biol., Vol 42, 988- 996. http://dx.doi.org/10.1093/icb/42.5.988
22. Vogel S. ( 1994) Life in Moving Fluids. Princeton University Press, Princeton.
23. Williams T.A. ( 1994a) "Locomotion in developing Artemialarvae: mechanical analysis of antennal propulsors based on large-scale physical models". Biol. Bull., Vol 187, 156- 163. http://dx.doi.org/10.2307/1542238
24. Williams T.A. ( 1994b) "A model of rowing propulsion and the ontogeny of locomotion in Artemialarvae". Biol. Bull., Vol 187, 164- 173. http://dx.doi.org/10.2307/1542239
25. Yen J. ( 2000) "Life in transition: balancing inertial and viscous forces by planktonic copepods". Biol. Bull., Vol 198, 213- 224. http://dx.doi.org/10.2307/1542525
http://brill.metastore.ingenta.com/content/journals/10.1163/15707563-00002444
Loading

Article metrics loading...

/content/journals/10.1163/15707563-00002444
2014-09-16
2017-09-22

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Animal Biology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation