Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Plasticity in food intake, thermogenesis and body mass in the tree shrew (Tupaia belangeri) is affected by food restriction and refeeding

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Animal Biology
For more content, see Archives Néerlandaises de Zoologie (Vol 1-17) and Netherlands Journal of Zoology (Vol 18-52).

Physiological adjustments are important strategies for small mammals in response to variation in food availability. To determine the physiological mechanisms affected by food restriction and refeeding, tree shrews were restricted to 85% of initial food intake for 4 weeks and refed ad libitum for another 4 weeks. Changes in food intake, body mass, thermogenesis, body composition, mitochondrial cytochrome c oxidase activity, uncoupling protein-1 content in brown adipose tissue and serum leptin levels were measured. The results showed that body mass, body fat mass and serum leptin levels significantly decreased in food restricted tree shrews, and increased when the restriction ended, showing a short “compensatory growth” rather than over-weight or obesity compared with ad libitum controls. Resting metabolic rate, non-shivering thermogenesis, brown adipose tissue mass (mg), and uncoupling protein-1 content decreased significantly in response to food restriction, and returned to the control levels after the animals were refed ad libitum, while the brown adipose tissue mass (%) and cytochrome c oxidase activity remained stable during food restriction and refeeding. Food intake increased shortly after refeeding, which perhaps contributed to the rapid regaining of body mass. These results suggest that Tupaia belangeri can adjust the status of its physiology integratively to cope with the lack of food by means of decreasing body mass, thermogenesis and serum leptin levels. Leptin may act as a starvation signal to predominantly mediate the reduction in body mass and energy expenditure.

Affiliations: 1: 1Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of University in Yunnan Province, School of Life Science of Yunnan Normal University, Kunming 650500, China


Full text loading...


Data & Media loading...

1. Ahima R.S. (2005) "Central actions of adipocyte hormones". Trends in Endocrinology and Metabolism, Vol 16(7), 307-313.
2. Ahima R.S. , Prabakaran D. , Mantzoros C. , Qu D. , Lowell B. , MaratosFlier E. , Flier J.S. (1996) "Role of leptin in the neuroendocrine response to fasting". Nature, Vol 382(6588), 250-252.
3. Alvarenga T.A. , Andersen M.L. , Papale L.A. , Antunes I.B. , Tufik S. (2005) "Influence of long-term food restriction on sleep pattern in male rats". Brain Res., Vol 1057, 49-56.
4. Cameron K.M. , Speakman J.R. (2011) "Reduction of dietary energy density reduces body mass regain following energy restriction in female mice". J. Nutr., Vol 141, 182-188.
5. Cleary M.P. (1986) "Consequences of restricted feeding/refeeding cycles in lean and obese female Zucker rats". J. Nutr., Vol 116, 290-303.
6. Cornish E.R. , Mrosovsky N. (1965) "Activity during food deprivation and satiation of six species of rodent". Anim. Behav., Vol 13, 242-248.
7. Coutre P. , Hulbert A.J. (1995) "Relationship between body mass, tissue metabolic rate, and sodium pump activity in mammalian liver and kidney". Am. J. Physiol., Vol 268, 641-650.
8. Freminet A. (1981) "Comparison of glycogen store in rats and guinea-pigs: effects of anaesthesia, fasting and re-feeding". Comp. Biochem. Physiol. B, Vol 69, 655-663.
9. Friedman J.M. (2011) "Leptin and the regulation of body weight". Keio Journal of Medicine, Vol 60(1), 1-9.
10. Gao W.R. , Zhu W.L. , Zhang D. , Sun S.R. , Wang Z.K. (2014) "Effects of fasting and re-feeding on energy metabolism and thermogenesis in the tree shrew (Tupaia belangeri)". Anim. Biol., Vol 64, 31-47.
11. Gray D.S. , Fisler J.S. , Bray G.A. (1988) "Effects of repeated weight loss and regain on body composition in obese rats". Am. J. Clin. Nutr., Vol 47, 393-399.
12. Gutman R. , Choshniak I. , Kronfeld-Schor N. (2006) "Defending body mass during food restriction in Acomys russatus: a desert rodent that does not store food". Am. J. Physiol., Vol 290, R881-R891.
13. Gutman R. , Yosha D. , Choshniak I. , Kronfeld-Schor N. (2007) "Two strategies for coping with food shortage in desert golden spiny mice". Physiol. Behav., Vol 90, 95-102.
14. Hambly C. , Speakman J.R. (2005) "Contribution of different mechanisms to compensation for energy restriction in the mouse". Obes. Res., Vol 13, 1548-1557.
15. Harris R.B. , Martin R.J. (1984) "Recovery of body weight from below “set point” in mature female rats". J. Nutr., Vol 114, 1143-1150.
16. Hill J.O. , Latiff A. , DiGirolamo M. (1985) "Effects of variable caloric restriction on utilization of ingested energy in rats". Am. J. Physiol., Vol 248, R549-R559.
17. Hill R.W. (1972) "Determination of oxygen consumption by use of the paramagnetic oxygen analyzer". J. Appl. Physiol., Vol 33(2), 261-263.
18. Holness M.J. , MacLennan P.A. , Palmer T.N. , Sugden M.C. (1988) "The disposition of carbohydrate between glycogenesis, lipogenesis and oxidation in liver during the starved-to-fed transition". Biochem. J., Vol 252, 325-330.
19. Ji H. , Friedman M.I. (1999) "Compensatory hyperphagia after fasting tracks recovery of liver energy status". Physiol. Behav., Vol 68, 181-186.
20. Kastin A.J. , Pan W. (2000) "Dynamic regulation of leptin entry into bloodbrain barrier". Regulatory Peptides, Vol 92(1-3), 37-43.
21. Levin I. , Trayhurn P. (1987) "Thermogenic activity and capacity of brown fat in fasted and refed golden hamsters". Am. J. Physiol., Vol 252, R987-R993.
22. Li X.S. , Wang D.H. (2005) "Regulation of body weight and thermogenesis in seasonally acclimatized Brandt’s voles (Microtus brandti)". Horm. Behav., Vol 48, 321-328.
23. Lowry O.H. , Rosebrough N.J. , Farr A.L. , Randall R.J. (1951) "Protein measurement with the Folin phenol reagent". J. Biol. Chem., Vol 193, 265-275.
24. Mueller P. , Diamond J. (2001) "Metabolic rate and environmental productivity: well provisioned animals evolved to run and idle fast". Proceedings of the National Academy of Sciences of the United States of America, Vol 98, 12550-12554.
25. Mustonen A.M. , Pyykonen T. , Nieminen P. (2005) "Adiponectin and peptide YY in the fasting blue fox (Alopex lagopus)". Comp. Biochem. Physiol. A, Vol 140, 251-256.
26. Mustonen A.M. , Saarela S. , Nieminen P. (2008) "Food deprivation in the common vole (Microtus arvalis) and the tundra vole (Microtus oeconomus)". J. Comp. Physiol. B, Vol 178, 199-208.
27. Nagashima K. , Nakai S. , Matsue K. , Konishi M. , Tanaka M. , Kanosue K. (2003) "Effects of fasting on thermoregulatory processes and the daily oscillations in rats". Am. J. Physiol., Vol 284, R1486-R1493.
28. Nagy T.R. , Pistole D.H. (1988) "The effects of fasting on some ephysiological parameters in the meadow vole, Microtus pennsylvanicus ". Comp. Biochem. Physiol. A, Vol 91, 679-684.
29. Rial E. , González-Barroso M.M. (2001) "Physiological regulation of the transport activity in the uncoupling proteins UCP1 and UCP2". Biochim. Biophys. Acta, Vol 1504, 70-81.
30. Ricquier D. , Bouillaud F. (2000) "Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance". J. Physiol., Vol 529, 3-10.
31. Rozen R. , Brigant L. , Apfelbaum M. (1994) "Effects of cycles of food restriction followed by ad libitum refeeding on body composition and energy expenditure in obese rats". Am. J. Clin. Nutr., Vol 59, 560-565.
32. Speakman J.R. (2007) "A nonadaptive scenario explaining the genetic predisposition to obesity: the “predation release” hypothesis". Cell Metab., Vol 6, 5-12.
33. Speakman J.R. , Mitchell S.E. (2011) "Caloric restriction". Mol. Asp. Med., Vol 32, 159-221.
34. Sundin U. , Moore G. , Nedergaard J. , Cannon B. (1987) "Thermogenin amount and activity in hamster brown fat mitochondria: effect of cold acclimation". Am. J. Physiol., Vol 252, R822-R832.
35. Van Itallie T.B. , Kissileff H.R. (1985) "Physiology of energy intake: an inventory control model". Am. J. Clin. Nutr., Vol 42, 914-923.
36. Villarin J.J. , Schaeffer P.J. , Markle R.A. , Lindstedt S.L. (2003) "Chronic cold exposure increases liver oxidative capacity in the marsupial Monodelphis domestica ". Comp. Biochem. Physiol. A, Vol 136, 621-630.
37. Wang Y.X. , Li C.Y. , Ma S.L. (1991) The Classification and Ecology of Treeshrew. Yunnan Scientific and Technological Press, Kunming.
38. Wang Z.K. , Sun R.Y. , Li Q.F. (1994) "Characteristics of the resting metabolic rate of tree shrew, Tupaia belangeri ". J. Beijing Normal Univ. (Nat. Sci.), Vol 30(3), 408-414.
39. Wilson P.N. , Osbourn D.F. (1960) "Compensatory growth after undernutrition in mammals and birds". Biol. Rev. Camb. Philos. Soc., Vol 35, 324-363.
40. Wisse B.E. , Campfield L.A. , Marliss E.B. , Morais J.A. , Tenenbaum R. (1999) "Effect of prolonged moderate and severe energy restriction and refeeding on plasma leptin concentrations in obese women". Am. J. Clin. Nutr., Vol 70, 321-330.
41. Wunder B.A. (1984) "Strategies for, and environmental cueing mechanisms of, seasonal changes in thermoregulatory parameters of small mammals". In: Merritt J.F. (Ed.) Winter Ecology of Small Mammals, pp.  165-172. Carnegie Museum of Natural History, Pittsburgh, PA, USA.
42. Xu D.L. , Liu X.Y. , Wang D.H. (2011) "Food restriction and refeeding have no effect on cellular and humoral immunity in Mongolian gerbils (Meriones unguiculatus)". Physiological and Biochemical Zoology, Vol 84, 87-98.
43. Zhan X.M. , Li Y.L. , Wang D.H. (2009) "Effects of fasting and refeeding on body mass, thermogenesis and serum leptin in Brandt’s voles (Lasiopodomys brandtii)". J. Therm. Biol., Vol 34, 237-243.
44. Zhang L.N. , Wang D.H. (2008) "Effects of food restriction and refeeding on energy balance regulation in Mongolian gerbils Meriones unguiculatus ". BFDG Abstracts/Appetite, Vol 51(3), 758.
45. Zhang Y. , Proenca R. , Maffei M. , Barone M. , Leopold L. , Friedman J.M. (1994) "Positional cloning of the mouse obese gene and its human homologue". Nature, Vol 372(6505), 425-432.
46. Zhao Z.J. , Cao J. (2009) "Plasticity in energy budget and behavior in Swiss mice and striped hamsters under stochastic food deprivation and refeeding". Comp. Biochem. Physiol. A, Vol 154, 84-91.
47. Zhao Z.J. , Wang D.H. (2006) "Effects of photoperiod on energy budgets and thermogenesis in Mongolian gerbils (Meriones unguiculatus)". J. Therm. Biol., Vol 31, 323-331.
48. Zhao Z.J. , Zhu Q.X. , Chen K.X. , Wang Y.K. , Cao J. (2013) "Energy budget, behavior and leptin in striped hamsters subjected to food restriction and refeeding". PLoS ONE, Vol 8(1), e54244.
49. Zhu W.L. , Jia T. , Li Z.H. , Xu W.J. , Lian X. , Wang Z.K. , Yin X.Q. (2008) "Thermogenesis andenergy metabolism during cold acclimation in Yunnan Chinese voles Eothenomys miletus ". Acta Zool. Sin., Vol 54(4), 590-601.
50. Zhu W.L. , Zhang H. , Wang Z.K. (2012) "Seasonal changes in body mass and thermogenesis in tree shrews (Tupaia belangeri) the roles of photoperiod and cold". J. Therm. Biol., Vol 37, 479-484.
51. Zhu W.L. , Mu Y. , Zhang H. , Zhang L. , Wang Z.K. (2013) "Effects of food restriction on body mass, thermogenesis and serum leptin levels in Apodemus chevrieri (Mammalia: Rodentia: Muridae)". Italian Journal of Zoology, Vol 80(3), 337-344.
52. Zhu W.L. , Mu Y. , Zhang H. , Gao W.R. , Zhang L. , Wang Z.K. (2014) "Effects of random food deprivation on body mass, behavior and serum leptin levels in Eothenomys miletus (Mammalia: Rodentia: Cricetidae)". Italian Journal of Zoology, Vol 81(2), 227-234.
53. Zhu W.L. , Wang Z.K. (2015) "Seasonal changes in body mass, serum leptin levels and hypothalamic neuropeptide gene expression in male Eothenomys olitor ". Comp. Biochem. Physiol. A, Vol 184, 83-89.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Animal Biology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation