Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Plasticity in the physiological energetics of Apodemus chevrieri: the role of dietary fiber content

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Animal Biology

Small mammals are usually adapted to cope with changes in food quality and availability. In order to investigate the adaptive strategy of small rodents responding to varying dietary fiber content, in the present study, Apodemus chevrieri individuals were acclimated to a high-fiber diet for four weeks and then a relatively low-fiber diet for another four weeks. The results show that body mass was relatively stable over the course of acclimation, but dry matter intake, gross energy intake and the mass of the digestive tract increased significantly and digestibility decreased significantly in high-fiber diet mice, while the digestible energy intake was similar for both high-fiber and low-fiber diet mice except for the first week. High-fiber/low-fiber diet mice showed only a significant lower basal metabolic rate and nonshivering thermogenesis compared to low-fiber diet mice on day R1. The high-fiber diet induced a decrease in serum leptin levels and brown adipose tissue mass associated with a reduction in the cytochrome c oxidase activity and uncoupling protein 1 content of brown adipose tissue. Body mass, thermogenic capacity, energy intake, serum leptin levels and digestive tract morphology returned to the control levels after 4 weeks of refeeding low-fiber diet. Further, serum leptin levels were positively related to body fat mass and negatively related to food intake. These data indicated that body mass, energy intake, serum leptin levels and organ morphological plasticity were the main strategies by which A. chevrieri copes with variations in dietary fiber content.

Affiliations: 1: 1Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of University in Yunnan Province, School of Life Science of Yunnan Normal University, Kunming, 650500, China ; 2: 2School of Energy and Environmental Science, Yunnan Normal University, Kunming, 650500, China

*Corresponding author; e-mail: zwl_8307@163.com
10.1163/15707563-00002503
/content/journals/10.1163/15707563-00002503
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading

Full text loading...

/content/journals/10.1163/15707563-00002503
Loading

Data & Media loading...

1. Abelenda M., Ledesma A., Rial E., Puerta M. (2003) "Leptin administration to cold-acclimated rats reduces both food intake and brown adipose tissue thermogenesis". J. Therm. Biol., Vol 28, 525-530. http://dx.doi.org/10.1016/S0306-4565(03)00053-6
2. Ahima R.S. (2005) "Central actions of adipocyte hormones". Trends. Endocrin. Met., Vol 16, 307-313. http://dx.doi.org/10.1016/j.tem.2005.07.010
3. Ahima R.S., Saper C.B., Flier J.S., Elmquist J.K. (2000) "Leptin regulation of neuroendocrine systems". Front. Neuroendocrin., Vol 21, 263-307. http://dx.doi.org/10.1006/frne.2000.0197
4. Bing C., Frankish H.M., Pickavance L., Wang Q., Hopkins D.F.C., Stock M.J., Williams G. (1998) "Hyperphagia in cold exposed rats is accompanied by decreased plasma leptin but unchanged hypothalamic NPY". Am. J. Physiol., Vol 274, R62-R68.
5. Bozinovic F. (1992) "Scaling of basal and maximum metabolic rate in rodents and the aerobic capacity model for the evolution of endothermy". Physiol. Zool., Vol 65, 921-932. http://dx.doi.org/10.1086/physzool.65.5.30158550
6. Bozinovic F. (1995) "Nutritional energetics and digestive responses of an herbivorous rodent (Octodon degus) to different levels of dietary fiber". J. Mammal., Vol 76, 627-637. http://dx.doi.org/10.2307/1382371
7. Bozinovic F., Novoa F.F. (1997) "Metabolic costs of rodents feeding on plant chemical defenses: a comparison between an herbivore and an omnivore". Comp. Biochem. Physiol. A., Vol 117, 511-514. http://dx.doi.org/10.1016/S0300-9629(96)00409-4
8. Bozinovic F., Novoa F.F., Sabat P. (1997) "Feeding and digesting fiber and tannins by an herbivorous rodent Octodon degus (Rodentia: Caviomorpha)". Comp. Biochem. Physiol. A., Vol 118, 625-630. http://dx.doi.org/10.1016/S0300-9629(96)00480-X
9. Cannon B., Nedergaard J. (2004) "Brown adipose tissue: function and physiological significance". Physiol. Rev., Vol 84, 277-359. http://dx.doi.org/10.1152/physrev.00015.2003
10. Choshniak I., Yahav S. (1987) "Can desert rodents better utilize low quality roughage than their non-desert kindred?" J. Arid. Environ., Vol 12, 241-246.
11. Cork S.J. (1994) "Digestive constraints on dietary scope in small and moderate-small mammals: how much do we really understand?" In: Chivers D.J., Langer P. (Eds) The Digestive System in Mammals: Food, Form and Function, pp.  337-369. Cambridge University Press, Cambridge, MA. http://dx.doi.org/10.1017/CBO9780511661716.022
12. Degen A.A., Kam M., Khokhlova I.S., Zeevi Y. (2000) "Fiber digestion and energy utilization of fat sand rats (Psammomys obesus) consuming the Anabasis articulata". Physiol. Biochem. Zool., Vol 73, 574-580. http://dx.doi.org/10.1086/317756
13. Demas G.E., Bowers R.R., Bartness T.J., Gettys T.W. (2002) "Photoperiodic regulation of gene expression in brown and white adipose tissue of Siberian hamsters (Phodopus sungorus)". Am. J. Physiol., Vol 282, R114-R121.
14. Flier J.S. (1998) "What’s in a name? In search of leptin’s physiological role". J. Clin. Endocrinol. Metab., Vol 83, 1407-1412.
15. Frederich R.C., Hamann A., Anderson S., Lollmann B., Lowell B.B., Flier J.S. (1995) "Leptin levels reflect body lipid content in mice: evidence for dietinduced resistance to leptin action". Nat. Med., Vol 1, 1311-1314. http://dx.doi.org/10.1038/nm1295-1311
16. Friedman J.M. (2011) "Leptin and the regulation of body weight". Keio. J. Med., Vol 60, 1-9. http://dx.doi.org/10.2302/kjm.60.1
17. Gao W.R., Zhu W.L., Zhou Q.H., Zhang H., Wang Z.K. (2014) "Diet induced obesity in Apodemus chevrieri (Mammalia: Rodentia: Muridae)". Ital. J. Zool., Vol 81, 235-245. http://dx.doi.org/10.1080/11250003.2014.904011
18. Geluso K., Hayes J.P. (1999) "Effects of dietary quality on basal metabolic rate and internal morphology of European starlings (Sturnus vulgaris)". Physiol. Biochem. Zool., Vol 72, 189-197. http://dx.doi.org/10.1086/316654
19. Grodzinski W., Wunder B.A. (1975) "Ecological energetics of small mammals". In: Golley E.B., Petrusewiez K., Ryszkowski L. (Eds) Small Mammals: Their Productivity and Copulation Dynamics, pp.  173-204. Cambridge University Press, Cambridge, England.
20. Gross J.E., Wang Z., Wunder B.A. (1985) "Effects of food quality and energy needs: changes in gut morphology and capacity of Microtus ocbrogaster". J. Mammal., Vol 66, 661-667. http://dx.doi.org/10.2307/1380792
21. Hammond K.A., Wunder B.A. (1991) "The role of diet quality and energy need in the nutritional ecology of a small herbivore, Microtus ocbrogaster". Physiol. Zool., Vol 64, 541-567. http://dx.doi.org/10.1086/physzool.64.2.30158190
22. Hill R.W. (1972) "Determination of oxygen consumption by use of the paramagnetic oxygen analyzer". J. Appl Phys., Vol 33, 261-263.
23. Himms-Hagen J. (1990) "Brown adipose tissue thermogenesis: interdisciplinary studies". Faseb. J., Vol 4, 2890-2898.
24. Juana C.V., Cristina B., Alejandra A.L.M. (2006) "Phenotypic plasticity in response to low quality diet in the South American omnivorous rodent Akodon azarae (Rodentia: Sigmodontinae)". Comp. Biochem. Physiol. A., Vol 145, 397-405. http://dx.doi.org/10.1016/j.cbpa.2006.07.013
25. Karasov W.H., Diamond J.M. (1988) "Interplay between physiology and ecology in digestion". Bio. Science., Vol 38, 602-611.
26. Kastin A.J., Pan W. (2000) "Dynamic regulation of leptin entry into bloodbrain barrier". Regul. Peptides., Vol 92, 37-43. http://dx.doi.org/10.1016/S0167-0115(00)00147-6
27. Klingenspor M., Ivemeyer M., Wiesinger H., Haas K., Heldmaier G., Wiesner R.J. (1996) "Biogenesis of thermogenic mitochondria in brown adipose tissue of Djungarian hamsters during cold adaptation". Biochem. J., Vol 316, 607-613. http://dx.doi.org/10.1042/bj3160607
28. Koteja P. (1996) "Limits to the energy budget in a rodent, Peromyscus maniculatus: does gut capacity set the limits?" Physiol. Zool., Vol 69, 994-1020. http://dx.doi.org/10.1086/physzool.69.5.30164243
29. Kronfeld-Schor N., Haim A., Dayan R., Zisapel N., Klingenspor M., Heldmaier G. (2000) "Seasonal hermogenic acclimation of diurnally and nocturnally active desertspiny mice". Physiol. Biochem. Zool., Vol 73, 27-44. http://dx.doi.org/10.1086/316718
30. Li X.S., Wang D.H. (2005) "Regulation of body weight and thermogenesis in seasonally acclimatized Brandt’s voles (Microtus brandti)". Horm. Behav., Vol 48, 321-328. http://dx.doi.org/10.1016/j.yhbeh.2005.04.004
31. Li X.S., Wang D.H., Yang M. (2004) "Effects of cold acclimation on body mass, serum leptin level, energy metabolism and thermogenesis in Mongolian gerbil (Meriones unguiculatus)". Acta Zoologica Sinica, Vol 50, 334-340 (in Chinese).
32. Lin C.S., Klingenberg M. (1980) "Isolation of uncoupling protein from brown adipose tissue mitochondria". Febs. Lett., Vol 113, 299-303. http://dx.doi.org/10.1016/0014-5793(80)80613-2
33. Liu H., Wang D.H., Wang Z.W. (2003) "Energy requirements during reproduction in female Brandt’s voles (Microtus brandti)". J. Mammal., Vol 84, 1410-1416. http://dx.doi.org/10.1644/BRG-030
34. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951) "Protein measurement with the Folin phenol reagent". J. Biol. Chem., Vol 193, 265-275.
35. McNab B.K. (1986) "The influence of food habits on the energetics of eutherian mammals". Ecol. Monogr., Vol 56, 1-19. http://dx.doi.org/10.2307/2937268
36. Nagy T.R., Negus N.C. (1993) "Energy acquisition and allocation in male collared lemmings (Dicrostonys groenlandicus): effects of photoperiod, temperature, and diet quality". Physiol. Zool., Vol 66, 537-560. http://dx.doi.org/10.1086/physzool.66.4.30163807
37. Nespolo R.F., Bacigalupe L.D., Rezende E.L., Bozinovic F. (2001) "When nonshivering thermogenesis equals maximum metabolic rate: thermal acclimation and phenotypic plasticity of fossorial Spalacopus cyanus (Rodentia)". Physiol. Biochem. Zool., Vol 74, 325-332. http://dx.doi.org/10.1086/320420
38. Nespolo R.F., Bacigalupe L.D., Sabat P., Bozinovic F. (2002) "Interplay among energy metabolism, organ mass and digestive enzyme activity in the mouse-opossum Thylamys elegans: the role of thermal acclimation". J. Exp. Biol., Vol 205, 2697-2703.
39. Ricquier D., Bouillaud F. (2000) "Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance". J. Physiol., Vol 529, 3-10. http://dx.doi.org/10.1111/j.1469-7793.2000.00003.x
40. Sibly R.M. (1981) "Strategies in digestion and defecation". In: Townsend C.R., Calow P. (Eds) Physiological Ecology: an Evolutionary Approach to Resource Use, pp.  109-139. Blackwell Scientific, Oxford.
41. Silva S.I., Jaksic F.M., Bozinovic F. (2004) "Interplay between metabolic rate and diet quality in the South American fox, Pseudalopex culpaeus". Comp. Biochem. Physiol. A., Vol 137, 33-38. http://dx.doi.org/10.1016/j.cbpb.2003.09.022
42. Song Z.G., Wang D.H. (2006) "Basal metabolic rate and organ size in Brandt’s voles (Lasiopodomys brandtii): effects of photoperiod, temperature and dietquality". Physiol. Behav., Vol 89, 704-710. http://dx.doi.org/10.1016/j.physbeh.2006.08.016
43. Sundin U., Moore G., Nedergaard J., Cannon B. (1987) "Thermogenin amount and activity in hamster brown fat mitochondria: effect of cold acclimation". Am. J. Physiol., Vol 252, 822-832.
44. Veloso C., Bozinovic F. (1993) "Dietary and digestive constraints on basal energy metabolism in a small herbivorous rodent". Ecology, Vol 74, 2003-2010. http://dx.doi.org/10.2307/1940843
45. Wiesinger H., Heldmaier G., Buchberger A. (1989) "Effect of photoperiod and acclimation temperature on nonshivering thermogenesis and GDP binding of brown fat mitochondria in the Djungarian hamster, Phodopus sungorus". Pflugers. Arch., Vol 413, 667-672. http://dx.doi.org/10.1007/BF00581818
46. Zhang Y., Proenca R., Maffei M., Barone M., Leopoid L., Friedman J.M. (1994) "Positional cloning of the mouse obese gene and it’s human homologue". Nature, Vol 372, 425-432. http://dx.doi.org/10.1038/372425a0
47. Zhao Z.J., Wang D.H. (2005) "Short photoperiod enhances thermogenic capacity in Brandt’s voles". Physiol. Behav., Vol 85, 143-149. http://dx.doi.org/10.1016/j.physbeh.2005.03.014
48. Zhao Z.J., Wang D.H. (2006) "Short photoperiod influences energy intake and serum leptin level in Brandt’s voles (Microtus brandtii)". Horm. Behav., Vol 49, 463-469. http://dx.doi.org/10.1016/j.yhbeh.2005.10.003
49. Zheng S.H. (1993) Rodentine Fossil in Quaternary Period in Sichuan and Guizhou. Science Press, Beijing (in Chinese).
50. Zhu W.L., Jia T., Lian X., Wang Z.K. (2008) "Evaporative water loss and energy metabolic in two small mammals, Eothenomys miletus and Apodemus chevrieri in Hengduan mountains region". J. Therm. Biol., Vol 33, 324-331. http://dx.doi.org/10.1016/j.jtherbio.2008.04.002
51. Zhu W.L., Yang S.C., Zhang L., Wang Z.K. (2012) "Seasonal variations of body mass, thermogenesis and digestive tract morphology in Apodemus chevrieri in Hengduan mountain region". Anim. Biol., Vol 62, 463-478. http://dx.doi.org/10.1163/157075612X650140
52. Zhu W.L., Zhang H., Meng L.H., Wang Z.K. (2013) "Effects of photoperiod on body mass, thermogenesis and serum leptin in Apodemus draco during cold exposure". Anim. Biol., Vol 63, 107-117. http://dx.doi.org/10.1163/15707563-00002397
53. Zhu W.L., Wang Z.K. (2015) "Seasonal changes in body mass, serum leptin levels and hypothalamic neuropeptide gene expression in male Eothenomys olitor". Comp. Biochem. Physiol. A., Vol 184, 83-89. http://dx.doi.org/10.1016/j.cbpa.2015.02.011
http://brill.metastore.ingenta.com/content/journals/10.1163/15707563-00002503
Loading

Article metrics loading...

/content/journals/10.1163/15707563-00002503
2016-11-25
2018-09-19

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Animal Biology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation