Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Geographical variation in limb muscle mass of the Andrew’s toad (Bufo andrewsi)

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Animal Biology

Muscles are vital for the process of movement, mating and escape of predators in amphibians. During evolution, the morphological and genetic characteristics as well as the size of muscles in species will change to adapt different environments. Theory predicts that low male-male competition in high-altitude/latitude selects for small limb muscles. Here, we used the Andrew’s toad (Bufo andrewsi) as a model animal to test this prediction by analyzing geographical variation in the mass of limb muscles across nine populations from the Hengduan Mountains in China. Inconsistent with the prediction, we found that latitude and altitude did not affect the relative mass of total combined limb muscles and mass of combined hindlimb muscles among populations. Meanwhile, the relative mass of combined forelimb muscles, the two forelimb muscles (flexor carpi radialis and extensor carpi radialis) and the four hindlimb muscles (e.g. biceps femoris, semimebranous, semitendinosus and peroneus) was lowest in middle latitude and largest in low latitude whereas gracilis minor was largest in high latitudes. However, we did not find any correlations between the two forelimb muscles and the four hindlimb muscles and altitude. Our findings suggest that combined forelimb muscles, flexor carpi radialis, extensor carpi radialis, biceps femoris, semimebranous, semitendinosus and peroneus are largest in low latitudes due to pressures of mate competition.

Affiliations: 1: 1Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China ; 2: 2College of Life Sciences, Northwest University, Xi’an 710069, China

*Corresponding author; e-mail:
Loading data from figshare Loading data from figshare

Full text loading...


Data & Media loading...

1. Berven K.A. (1982) "The genetic basis of altitudinal variation in the wood frog Rana sylvatica II. An experimental analysis of larval development". Oecologia, Vol 52, 360-369. [Crossref]
2. Chen W., Guan T., Ren L., He D., Wang Y., Lu X. (2015) "Prehibernation energy storage in Heilongjiang brown frogs (Rana amurensis) from five populations in North China". Asian Herpetol. Res., Vol 6, 45-50.
3. Duellman W.E. (1992) "Reproductive strategies of frogs". Sci. Am., Vol 267, 80-87. [Crossref]
4. Emlen S.T., Oring L.W. (1977) "Ecology, sexual selection, and the evolution of mating systems". Science, Vol 197, 215-223. [Crossref]
5. Fei L., Ye C.Y. (2001) The Colour Handbook of Amphibians of Sichuan. China Forestry Publishing House, Beijing.
6. Guo B.C., Lu D., Liao W.B., Merilä J. (2016) "Genome-wide scan for adaptive differentiation along altitudinal gradient in the Andrew’s toad Bufo andrewsi". Mol. Ecol., Vol 25, 3884-3990. [Crossref]
7. Hirano M., Rome L.C. (1984) "Jumping performance of frogs (Rana pipiens) as a function of muscle temperature". J. Exp. Biol., Vol 108, 429-439.
8. Howard R.D. (1984) "Alternative mating behaviors of young male bullfrogs". Am. Zool., Vol 24, 397-406. [Crossref]
9. Howard R.D., Kluge A.G. (1985) "Proximate mechanisms of sexual selection in wood frogs". Evolution, Vol 39, 260-277. [Crossref]
10. Jin L., Mi Z.P., Liao W.B. (2016a) "Altitudinal variation in male reproductive investment in a polyandrous frog species (Hyla gongshanensis jingdongensis)". Anim. Biol., Vol 66, 289-303. [Crossref]
11. Jin L., Yang S.N., Liao W.B., Lüpold S. (2016b) "Altitude underlies variation in the mating system, somatic condition and investment in reproductive traits in male Asian grass frogs (Fejervarya limnocharis)". Behav. Ecol. Sociobiol., Vol 70, 1197-1208. [Crossref]
12. Lee J.C. (2001) "Evolution of a secondary sexual dimorphism in the toad, Bufo marinus". Copeia, Vol 441, 928-935. [Crossref]
13. Lee J.C., Corrales A.D. (2002) "Sexual dimorphism in hind-limb muscle mass is associated with male reproductive success in Bufo marinus". J. Herpetol., Vol 36, 502-505. [Crossref]
14. Liao W.B., Wu Q.G., Barrett K. (2012) "Evolution of sexual dimorphism in the forelimb muscles of Andrew’s toad (Bufo andrewsi) in response to putative sexual selection". Anim. Biol., Vol 62, 83-93. [Crossref]
15. Liao W.B., Lu X. (2009a) "Male mate choice in the Andrew’s toad Bufo andrewsi: a preference for larger females". J. Ethol., Vol 27, 413-417.
16. Liao W.B., Lu X. (2009b) "Sex recognition by male Andrew’s toad Bufo andrewsi in a subtropical montane region". Behav. Proc., Vol 82, 100-103. [Crossref]
17. Liao W.B., Lu X. (2010) "Age structure and body size of the Chuanxi tree toad Hyla annectans chuanxiensis from two different elevations (China)". Zool. Anz., Vol 248, 255-263. [Crossref]
18. Liao W.B., Lu X. (2011) "Proximate mechanisms leading to large male-mating advantage in the Andrew’s toad, Bufo andrewsi". Behaviour, Vol 148, 1087-1102. [Crossref]
19. Liao W.B., Lu X. (2012a) "Variation in mating patterns in the Andrew’s toad Bufo andrewsi along an elevational gradient in southwestern China". Ethol. Ecol. Evol., Vol 24, 174-186. [Crossref]
20. Liao W.B., Lu X. (2012b) "Adult body size = f(initial size + growth rate × age): explaining the proximate cause of Bergman’s cline in a toad along altitudinal gradients". Evol. Ecol., Vol 26, 579-590. [Crossref]
21. Liao W.B. (2015) Evolution of Life History Traits in Bufo andrewsi . Science Press, Beijing, China.
22. Liao W.B., Liu W.C., Merilä J. (2015) "Andrew meets Rensch: sexual size dimorphism and the inverse of Rensch’s rule in Andrew’s toad (Bufo andrewsi)". Oecologia, Vol 177, 389-399. [Crossref]
23. Liao W.B., Lu X., Jehle R. (2014) "Altitudinal variation in reproductive investment and trade-off between egg size and clutch size in the Andrew’s toad (Bufo andrewsi)". J. Zool., Vol 293, 84-91. [Crossref]
24. Liao W.B., Luo Y., Lou S.L., Jehle R. (2016a) "Geographic variation in life-history traits: growth season affects age structure, egg size and clutch size in Andrew’s toad (Bufo andrewsi)". Front. Zool., Vol 13, 6. [Crossref]
25. Liao W.B., Lou S.L., Zeng Y., Kotrschal A. (2016b) "Large brains, small guts: the expensive tissue hypothesis supported within anurans". Am. Nat., Vol 188, 693-700. [Crossref]
26. Ma X.H., Zhong M.J., Long J., Mi Z.P., Liao W.B. (2016) "Digestive tract adaptation associated with temperature and precipitation in male Bufo andrewsi". Anim. Biol., Vol 66, 279-288. [Crossref]
27. Mai C.L., Liu Y.H., Jin L., Mi Z.P., Liao W.B. (2017) "Altitudinal variation in somatic condition and investment in reproductive traits in male Yunnan pond frog (Pelophylax pleuraden)". Zool. Anz., Vol 266, 189-195. [Crossref]
28. Mao M., Mi Z.P., Yang Z.S., Zhou C.Q. (2014) "Sexual dimorphism in the limb muscles of the dark-spotted frog, Pelophylax nigromaculata". Herpetol. J., Vol 24, 147-153.
29. Mi Z.P. (2012) "Sexual dimorphism in the forelimb muscles of the Asiatic toad Bufo gargarizans". Herpetol. J., Vol 22, 219-224.
30. Mi Z.P. (2013) "Sexual dimorphism in the hindlimb muscles of the Asiatic toad (Bufo gargarizans) in relation to male reproductive success". Asian Herpetol. Res., Vol 4, 56-61. [Crossref]
31. Oka Y., Ohtani R., Satou M., Ueda K. (1984) "Sexually dimorphic muscles in the forelimb of the Japanese toad, Bufo japonicus". J. Morphol., Vol 180, 297-308. [Crossref]
32. Peters S.E., Aulner D.A. (2000) "Sexual dimorphism in forelimb muscles of the bullfrog, Rana catesbeiana: a functional analysis of isometric contractile properties". J. Exp. Biol., Vol 203, 3639-3654.
33. Peters S.E., Kamel L.T., Bashor D.P. (1996) "Hopping and swimming in the leopard frog, Rana pipiens: I. Step cycles and kinematics". J. Morphol., Vol 230, 1-16. [Crossref]
34. Räsänen K., Söderman F., Laurila A., Merilä J. (2008) "Geographic variation in maternal investment: acidity affects egg size and fecundity in Rana arvalis". Ecology, Vol 89, 2553-2562. [Crossref]
35. Roberts T.J., Abbott E.M., Azizi E. (2011) "The weak link: do muscle properties determine locomotor performance in frogs?" Philo. Trans. R. Soc. B, Vol 366, 1488-1495. [Crossref]
36. Schultz E.T., Conover D.O. (1997) "Latitudinal differences in somatic energy storage: adaptive responses to seasonality in an estuarine fish (Atherinidae: Menidiamenidia)". Oecologia, Vol 109, 516-529. [Crossref]
37. Strickland N.C. (1978) "Muscle weights and succinic dehydrogenase distribution in the hind limb mus-culature of two rodents (Thryonomys gregorianus and Pedetes capensis) with different locomotory habits". Acta Anat., Vol 102, 203-208. [Crossref]
38. Wells K.D. (1977) "The social behaviour of anuran amphibians". Anim. Behav., Vol 25, 666-693. [Crossref]
39. Wells K.D. (2007) The Ecology and Behavior of Amphibians. University of Chicago Press, Chicago. [Crossref]
40. Wu Q.G., Lou S.L., Zeng Y., Liao W.B. (2016) "No evidence for signifcant effect of body size and age on male mating success in the spot-legged frog". Herpetol. J., Vol 26, 245-250.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Animal Biology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation