Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Estimation of apparent survival probability of the harvestman Paranemastoma sillii sillii (Herman, 1871) from two caves

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Animal Biology

Reliable estimates of population parameters are lacking for most cave-dwelling species. This lack of knowledge may hinder the appropriate management of caves and populations of cave-dwelling species. Using monthly capture-recapture data and Cormack-Jolly-Seber models, we (i) estimated the apparent survival of individuals in two cave populations of the harvestman Paranemastoma sillii sillii (Herman, 1871) from the Mehedinti Mountains in south-western Romania; (ii) investigated temporal variation in apparent survival; (iii) tested if surface weather conditions affect apparent survival of cave-dwelling harvestmen through their influence upon cave environmental conditions and (iv) tested for sex differences in apparent survival. Our results show that the apparent monthly survival estimates were high for both studied cave populations and there was a significant sex effect on survival. Males had lower survival than females, and the survival difference between caves was larger in males than in females. Temporal (i.e., monthly) variation in apparent survival was low and the weather conditions at the surface had little influence on apparent survival as the environment inside the caves is well buffered against weather fluctuations outside the caves. Our results indicate that caves stabilize survival of facultative cave-dwelling species and may serve as microrefugia for epigean species. We suggest that caves should be considered for conservation because they may serve as a refuge for some epigean species during harsh weather conditions.

Affiliations: 1: 1“Emil Racoviţă” Institute of Speleology of Romanian Academy, 13 Septembrie Road, No. 13, 050711 Bucharest, Romania ; 2: 2Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland ; 3: 3KARCH, Passage Maximilien-de-Meuron 6, CH-2000 Neuchâtel, Switzerland ; 4: 4University Ovidius Constanţa, Faculty of Natural Sciences, Al. Universităţii, Corp B, Constanţa, Romania

*Corresponding author; e-mail:

Full text loading...


Data & Media loading...

1. Avram Ş., Dumitrescu D. (1969) "Contributii la cunoasterea raspindirii geografice si a ecologiei opilionidelor cavernicole, endogee si epigee, din Romania". Trav. Inst. Spéol. E. Racovitza, Vol 8, 99-145.
2. Avram Ş. (1973) "Contribution à la connaissance du développement embryonnaire et postembryonnaire chez Nemastoma cf. sillii Herman (Opiliones, Nemastomatidae)". In: Livre Cent. Trav. Inst. Spéol. E. Racovitza, pp.  269-303.
3. Badino G. (2010) "Underground meteorology – “What’s the weather underground?”". Acta Carsol., Vol 39, 427-448. [Crossref]
4. Balogová M., Jelić D., Kyselová M., Uhrin M. (2017) Subterranean systems provide a suitable overwintering habitat for Salamandra. I.J.S., 46(3).
5. Burnham K.P., Anderson D.R., White G.C., Brownie C., Pollock K.H. (1987) Design and Analysis Methods for Fish Survival Experiments Based on Release-Recapture. American Fisheries Society Monograph 5. Bethesda, Maryland.
6. Burnham K.P., Anderson D.R. (1998) Model Selection and Inference. Springer, New York. [Crossref]
7. Burton J.L., Lance R.F., Westervelt J.D., Leberg P.J. (2012) "An individual-based model for metapopulations on patchy landscapes-genetics and demography (IMPL-GD)". In: Vestervelt J.D., Cohen G.L. (Eds) Ecologist-Developed Spatially-Explicit Dynamic Landscape Models. Modeling Dynamic Systems, pp.  197-209. Springer Science + Business Media LLC, New York. [Crossref]
8. Buzatto B.A., Requena G.S., Martins E.G., Machado G. (2007) "Effects of maternal care on the lifetime reproductive success of females in a Neotropical harvestman". J. Anim. Ecol., Vol 76, 937-945. [Crossref]
9. Buzatto B.A., Tomkins J.L., Simmons L.W., Machado G. (2014) "Correlated evolution of sexual dimorphism and male dimorphism in a clade of Neotropical harvestmen". Evolution, Vol 68, 1671-1686. [Crossref]
10. Cigna A.A. (2002) "Modern trend in cave monitoring". Acta Carsologica, Vol 3, 35-54.
11. Constantin S., Lauritzen S.E., Lundberg J. (2006) "New data on the chronology of the Termination II and paleoclimate during MIS 5, based on the study of a stalagmite from Closani Cave (SW Romania)". In: Onac B.P., Tamas T., Constantin S., Persoiu A. (Eds) Archives of Climate Change in Karst. Special Publication 10, pp.  98-100. Karst Waters Institute, USA.
12. Costache I. (2011) Flora şi Vegetaţia Bazinului Hidrografic Inferior al Râului Motru, I, Flora. Universitaria, Craiova.
13. Crone E.E. (2001) "Is survivorship a better fitness surrogate than fecundity?" Evolution, Vol 55, 2611-2614. [Crossref]
14. Culver D.C. (1982) Cave Life: Evolution and Ecology. Harvard University Press, Massachussets and London. [Crossref]
15. Culver D.C., Pipan T. (2009) The Biology of Caves and Other Subterranean Habitats. Oxford University Press, New York.
16. Emlen S.T., Oring L.W. (1977) "Ecology, sexual selection and the evolution of mating systems". Science, Vol 197, 215-222. [Crossref]
17. Ficetola G.F., Pennati R., Manenti R. (2012) "Do cave salamanders occur randomly in cavities? An analysis with Hydromantes strinatii". Amphib-Reptil., Vol 33, 251-259. [Crossref]
18. Frederiksen M., Lebreton J.D., Pradel R., Choquet R., Gimenez O. (2014) "Identifying links between vital rates and environment: a toolbox for the applied ecologist". J. Appl. Ecol., Vol 51, 71-81. [Crossref]
19. Gould W.R., Nichols J.D. (1998) "Estimation of temporal variability of survival in animal populations". Ecology, Vol 79, 2531-2538. [Crossref]
20. Hoyle S.D., Pople A.R., Toop G.J. (2001) "Mark-recapture may reveal more about ecology than about population trends: demography of a threatened ghost bat (Macroderma gigas) population". Austral. Ecol., Vol 26, 80-92.
21. Inchausti P., Halley J. (2003) "On the relation between temporal variability and persistence time in animal populations". J. Anim. Ecol., Vol 72, 899-908. [Crossref]
22. Johnson H.E., Mills L.S., Stephenson T.R., Wehausen J.D. (2010) "Population-specific vital rate contributions influence management of an endangered ungulate". Ecol. Appl., Vol 20, 1753-1765. [Crossref]
23. Joyce S.J., Jamieson I.G., Barker R. (2004) "Survival of adult mountain stone weta Hemideina maori (Orthoptera: Anostostomatidae) along an altitude gradient as determined by mark-recapture". New Zeal. J. Ecol., Vol 28, 55-61.
24. Laake J., Rexstad E. (2008) "RMark – an alternative to building linear models in MARK". In: Cooch E., White G. (Eds) Program MARK: a Gentle Introduction. 9th Edition. Available at (Accessed 1 October 2015).
25. Lambert D.M., Hoenig J.M., Lipicius R.N. (2006) "Tag return estimation of annual and semiannual survival rates of adult female blue crabs". Trans. Am. Fish. Soc., Vol 135, 1592-1603. [Crossref]
26. Lebreton J.D., Burnham K.P., Clobert J., Anderson D.R. (1992) "Modeling survival and testing biological hypothesis using marked animals: a unified approach with case studies". Ecol. Monogr., Vol 62, 67-118. [Crossref]
27. Lima S.L., Dill L.M. (1990) "Behavioral decisions made under the risk of predation: a review and prospectus". Can. J. Zool., Vol 68, 619-640. [Crossref]
28. Lunghi E., Manenti R., Ficetola G.F. (2014) "Do cave features affect underground habitat exploitation by non-troglobite species?" Acta. Oecol., Vol 55, 29-35. [Crossref]
29. MacNamara J.M., Houston A.I. (1994) "The effect of a change in foraging options on intake rate and predation rate". Am. Nat., Vol 144, 978-1000. [Crossref]
30. Manenti R., Ficetola G.F., Bianchi B., De Bernardi F. (2009) "Habitat features and distribution of Salamandra salamandra in underground springs". Acta. Herpetol., Vol 4, 143-151.
31. Manenti R., Ficetola G.F., Marieni A., De Bernardi F. (2011) "Caves as breeding sites for Salamandra salamandra: habitat selection, larval development and conservation issues". North-West. J. Zool., Vol 7, 304-309.
32. Manenti R., Siesa M.E., Ficetola G.F. (2013) "Odonata occurrence in caves: active or accidentals? A new case study". J. Cave. Karst. Stud., Vol 75, 205-209. [Crossref]
33. Mestre L.A.M., Pinto-da-Rocha R. (2004) "Population dynamics of an isolated population of the Harvestmen Ilhaia cuspidata (Opiliones, Gonyleptidae), in Araucaria Forest (Curitiba, Paraná, Brazil)". J. Arachnol., Vol 32, 208-220. [Crossref]
34. Pabst W. (1953) "Zur Biologie der mitteleuropäischen Troguliden". Zool. Jb. Abt. Syst. Ökol. U. Geog. Tiere., Vol 82, 1-156.
35. Painting C.J., Probert A.F., Townsend D.J., Holwell G.I. (2015) "Multiple exaggerated weapon morphs: a novel form of male polymorphism in harvestmen". Sci. Rep., Vol 5, 16368. [Crossref]
36. Pipan T., Culver D.C. (2012) "Convergence and divergence in the subterranean realm: a reassessment". Biol. J. Linnean Soc., Vol 107, 1-14. [Crossref]
37. Protas M., Jeffery W.R. (2012) "Evolution and development in cave animals: from fish to crustaceans". Wiley Interdiscip. Rev. Dev. Biol., Vol 1, 823-845. [Crossref]
38. R Development Core Team (2015) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Available at (Accessed 1 October 2015).
39. Racey P.A., Entwistle A.C. (2000) "Life history and reproductive strategies of bats". In: Crichton E.G., Krutzsch P. (Eds) The Reproductive Biology of Bats, pp.  363-414. Academic Press, London. [Crossref]
40. Reddell J.R. (2012) "Spiders and related groups". In: Culver C., White W.B. (Eds) Encyclopedia of Caves, 786-797. Elsevier. [Crossref]
41. Requena G.S., Buzatto B.A., Martins E.G., Machado G. (2012) "Paternal care decreases foraging activity and body condition, but does not impose survival costs to caring males in a Neotropical arachnid". PLoS ONE, Vol 7, e46701. [Crossref]
42. Sandel B. (2014) "Towards a taxonomy of spatial scale-dependence". Ecography, Vol 38, 358-369. [Crossref]
43. Schmidt B.R., Schaub M., Anholt B.R. (2002) "Why you should use capture-recapture methods when estimating survival and breeding probabilities: on bias, temporary emigration, overdispersion and common toads". Amphib-Reptil., Vol 23, 375-388. [Crossref]
44. Schmidt B.R., Schaub M., Steinfartz S. (2007) "Apparent survival of the salamander Salamandra salamandra is low because of high migratory activity". Front. Zool., Vol 4, 19. [Crossref]
45. Sendor T., Simon M. (2003) "Population dynamics of the pipistrelle bat: effects of sex, age and winter weather on seasonal survival". J. Anim. Ecol., Vol 72, 308-320. [Crossref]
46. Simões M.H., Souza-Silva M., Ferreira R.L. (2015) "Cave physical attributes influencing the structure of terrestrial invertebrate communities in Neotropics". Subterr. Biol., Vol 16, 103-121. [Crossref]
47. Talley T.S. (2007) "Which spatial heterogeneity framework? Consequences for conclusions about patchy population". Ecology, Vol 88, 1476-1489. [Crossref]
48. Taylor S.J., Krejca J.K., Niemiller M.L., Dreslik M.J., Phillips C.A. (2015) "Life history and demographic differences between cave and surface populations of the western slimy salamander, Plethodon albagula (Caudata: Plethodontidae), in central Texas". Herpetol. Conserv. Biol., Vol 10, 740-752.
49. Villella R.F., Smith D.R., Lemarie D.P. (2004) "Estimating survival and recruitment in a freshwater mussel population using mark-recapture techniques". Am. Midl. Nat., Vol 151, 114-133. [Crossref]
50. White G.C., Burnham K.P. (1999) "Program MARK: survival estimation for populations of marked animals". Bird Study., Vol 46(sup001), 120-138. [Crossref]
51. Willemart R.H., Gnaspini P. (2004) "Spatial distribution, mobility, gregariousness, and defensive behavior in Brazilian cave harvestman Goniosoma albiscriptum (Arachnida, Opiliones, Gonyleptidae)". Anim. Biol., Vol 54, 221-235. [Crossref]
52. Willemart R.H., Osses F., Chelini M.C., Macías-Ordóñez R., Machado G. (2009) "Sexually dimorphic legs in a Neotropical harvestman (Arachnida, Opiliones): ornament or weapon?" Behav. Processes, Vol 80, 51-59. [Crossref]
53. Zajitschek F., Brassil C., Bonduriansky R., Brooks R.C. (2009) "Sex effects on life span and senescence in the wild when dates of birth and death are unknown". Ecology, Vol 90, 1698-1707. [Crossref]

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Animal Biology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation