Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Brain size in Hylarana guentheri seems unaffected by variation in temperature and growth season

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

Brain size varies dramatically between vertebrate species. Two prominent adaptive hypotheses – the Cognitive Buffer Hypothesis (CBH) and the Expensive Brain Hypothesis (EBH) – have been proposed to explain brain size evolution. The CBH assumes that brain size should increase with seasonality, as the cognitive benefits of a larger brain should help overcoming periods of food scarcity via, for example, increased behavioral flexibility. Alternatively, the EBH states that brain size should decrease with seasonality because a smaller brain confers energetic benefits in periods of food scarcity. Here, to test the two adaptive hypotheses by studying the effects of variation in temperature and growth season on variations in overall brain size and the size of specific brain regions (viz. olfactory nerves, olfactory bulbs, telencephalon, optic tectum and cerebellum) among Hylarana guentheri populations. Inconsistent with the predictions of both the EBH and the CBH, variation in temperature and growth season did not exhibit correlations with overall brain size and the size of brain regions across populations. Hence, our data do not provide support for either the EBH or the CBH to explain brain size variation in H. guentheri. Furthermore, brain size variation did not differ between males and females in this species. Our findings suggest that both the variation in temperature and growth season did not shape the variation in brain size in H. guentheri.

Affiliations: 1: 1Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China ; 2: 2Micangshan Nature Reserve, Wangcang, 628200, Sichuan, China

*Corresponding authors; e-mails: zhouzm81@gmail.com; Liaobo_0_0@126.com
10.1163/15707563-00002533
/content/journals/10.1163/15707563-00002533
dcterms_title,pub_keyword,dcterms_description,pub_author
10
5
Loading
Loading data from figshare Loading data from figshare
Loading

Full text loading...

/content/journals/10.1163/15707563-00002533
Loading

Data & Media loading...

1. Aiello L.C., Wheeler P. (1995) "The expensive-tissue hypothesis – the brain and the digestive system in human and primate evolution". Curr. Anthropol., Vol 36, 199-221. [Crossref]
2. Allmann J., Mc Laughlin T., Hakeem A. (1993) "Brain weight and life-span in primate species". Proc. Natl. Acad. Sci. USA, Vol 90, 118-122. [Crossref]
3. Burns J.G., Rodd F.H. (2008) "Hastiness, brain size and predation regime affect the performance of wild guppies in a spatial memory task". Anim. Behav., Vol 76, 911-922. [Crossref]
4. Butler A.B., Hodos W. (2005) Comparative Vertebrate Neuroanatomy: Evolution and Adaptation. 2nd Edition. Wiley-Liss, New York. [Crossref]
5. Chen C., Huang Y.Y., Liao W.B. (2016a) "A comparison of testes size and sperm length between Polypedates megacephalus populations at different altitudes". Herpetol. J., Vol 26, 249-252.
6. Chen M., Huang Y., Liu G., Qin F., Yang S., Xu X. (2016b) "Effects of enhanced UV-B radiation on morphology, physiology, biomass, leaf anatomy and ultrastructure in male and female mulberry (Morus alba) saplings". Environ. Exp. Bot., Vol 129, 85-93. [Crossref]
7. Chrispo E., Chapman L.J. (2010) "Geographic variation in phenotypic plasticity in response to dissolved oxygen in an African cichlid fish". J. Evol. Biol., Vol 23, 2091-2103. [Crossref]
8. Clutton-Brock T.H., Harvey P.H. (1980) "Primates, brains and ecology". J. Zool., Vol 190, 309-323. [Crossref]
9. Dang Z.H., Chen F.J. (2011) "Responses of insects to rainfall and drought". Chin. J. App. Entomol., Vol 8, 1161-1169.
10. Deaner R.O., Isler K., Burkart J., van Schaik C.P. (2007) "Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates". Brain Behav. Evol., Vol 70, 115-124. [Crossref]
11. Dunbar R.I., Shultz S. (2007) "Evolution in the social brain". Science, Vol 317, 1344-1347. [Crossref]
12. Fei L., Ye C.Y. (2001) The Colour Handbook of Amphibians of Sichuan. China Forestry Publishing House, Beijing.
13. Fonseca-Azevedo K., Herculano-Houzel S. (2012) "Metabolic constraing imposes tradeoff between body size and number of brain neurons in human evolution". Proc. Natl. Acad. Sci. USA, Vol 109, 18571-18576. [Crossref]
14. Gonda A., Herczeg G., Merilä J. (2011) "Population variation in brain size of nine-spined sticklebacks (Pungitius pungitius) – local adaptation or environmentally induced variation?" BMC Evol. Biol., Vol 11, 75. [Crossref]
15. Gonda A., Trokovic N., Herczeg G., Laurila A., Merilä J. (2010) "Predation- and competition-mediated brain plasticity in Rana temporaria tadpoles". J. Evol. Biol., Vol 23, 2300-2308. [Crossref]
16. Huber R., van Staaden M.J., Kaufman L.S., Liem K.F. (1997) "Microhabitat use, trophic patterns, and the evolution of brain structure in African cichlids". Brain Behav. Evol., Vol 50, 167-182. [Crossref]
17. Isler K., van Schaik C.P. (2009) "The expensive brain: a framework for explaining evolutionary changes in brain size". J. Hum. Evol., Vol 57, 392-400. [Crossref]
18. Jacobs L.F. (1996) "Sexual selection and the brain". Trends Ecol. Evol., Vol 11, 82-86. [Crossref]
19. Jiang A., Zhong M.J., Yang R.L., Liao W.B., Jehle R. (2015) "Seasonality and age is positively related to brain size in Andrew’s toad (Bufo andrewsi)". Evol. Biol., Vol 42, 339-348. [Crossref]
20. Jin L., Mi Z.P., Liao W.B. (2016a) "Altitudinal variation in male reproductive investment in a polyandrous frog species (Hyla gongshanensis jingdongensis)". Anim. Biol., Vol 66, 289-303. [Crossref]
21. Jin L., Yang S.N., Liao W.B., Lüpold S. (2016b) "Altitude underlies variation in the mating system, somatic condition and investment in reproductive traits in male Asian grass frogs (Fejervarya limnocharis)". Behav. Ecol. Sociobiol., Vol 70, 1197-1208. [Crossref]
22. Köhler M., Moyà-Solà S. (2004) "Reduction of brain and sense organs in the fossil insular bovid Myotragus". Brain Behav. Evol., Vol 63, 125-140. [Crossref]
23. Kotrschal A., Buechel S.D., Zala S.M., Corral-Lopez A., Penn D.J., Kolm N. (2015) "Brain size affects female but not male survival under predation threat". Ecol. Lett., Vol 18, 646-652. [Crossref]
24. Kotrschal A., Deacon A.E., Magurran E.A., Kolm N. (2017) "Predation pressure shapes brain anatomy in the wild". Evol. Ecol. DOI:10.1007/s10682-017-9901-8.
25. Lefebvre L., Whittle P., Lascaris E., Finkelstein A. (1997) "Feeding innovations and forebrain size in birds". Anim. Behav., Vol 53, 549-560. [Crossref]
26. Li C., Liao W.B., Yang Z.S., Zhou C.Q. (2010) "A skeletochronological estimation of age structure in a population of the Guenther’s frog, Hylarana guentheri, from western China". Acta Herpetol., Vol 5, 1-11.
27. Liao W.B., Liu W.C., Merilä J. (2015a) "Andrew meets Rensch: sexual size dimorphism and the inverse of Rensch’s rule in Andrew’s toad (Bufo andrewsi)". Oecologia, Vol 177, 389-399. [Crossref]
28. Liao W.B., Lou S.L., Zeng Y., Merilä J. (2015b) "Evolution of anuran brains: disentangling ecological and phylogenetic sources of variation". J. Evol. Biol., Vol 28, 1986-1996. [Crossref]
29. Liao W.B., Lou S.L., Zeng Y., Kotrschal A. (2016) "Large brains, small guts: the expensive tissue hypothesis supported in anurans". Am. Nat., Vol 188, 693-699. [Crossref]
30. Liao W.B., Lu X. (2010) "Age structure and body size of the Chuanxi tree toad Hyla annectans chuanxiensis from two different elevations (China)". Zool. Anz., Vol 248, 255-263. [Crossref]
31. Llinas R., Precht W. (1976) Frog Neurobiology: a Handbook. Springer-Verlag, Now York. [Crossref]
32. Lüpold S., Jin L., Liao W.B. (2017) "Population density and structure drive differential investment in pre- and postmating sexual traits in frogs". Evolution, Vol 71, 1686-1699. [Crossref]
33. Ma X.H., Zhong M.J., Long J., Mi Z.P., Liao W.B. (2016) "Evolution in digestive tract in Bufo andrewsi associated with temperature and precipitation". Anim. Biol., Vol 66, 279-288. [Crossref]
34. Mai C.L., Liao J., Zhao L., Liu S.M., Liao W.B. (2017) "Brain size evolution in the frog Fejervarya limnocharis does neither support the cognitive buffer nor the expensive brain framework hypothesis". J. Zool., Vol 203, 63-72. [Crossref]
35. Mink J.W., Blumenschine R.J., Adams D.B. (1981) "Ratio of central nervous-system to body metabolism in vertebrates – its constancy and functional basis". Am. J. Physiol., Vol 241, R203-R212.
36. Morecroft M.D., Bealey C.E., Howells E., Rennie S., Woiwod I.P. (2002) "Effects of drought on contrasting insect and plant species in the UK in the mid-1990s". Global Ecol. Biol., Vol 11, 7-22. [Crossref]
37. Morrison C., Hero J.M. (2003) "Geographic variation in life history characteristics of amphibians: a review". J. Anim. Ecol., Vol 72, 270-279. [Crossref]
38. Pollen A.A., Dobberfuhl A.P., Scace J., Igulu M.M., Renn S.C.P., Shumway C.A., Hofmann H.A. (2007) "Environmental complexity and social organization sculpt the brain in lake Tanganyikan cichlid fish". Brain Behav. Evol., Vol 70, 21-39. [Crossref]
39. Pravosudov V.V., Clayton N.S. (2002) "A test of the adaptive specialization hypothesis: population differences in caching, memory, and the hippocampus in black-capped chickadees (Poecile atricapilla)". Behav. Neurosci., Vol 116, 515. [Crossref]
40. Reader S.M., Hager Y., Laland K.N. (2011) "The evolution of primate general and cultural intelligence". Phil. Trans. R. Soc. B, Vol 366, 1017-1027. [Crossref]
41. Roth T.C., LaDage L.D., Pravosudov V.V. (2011) "Variation in hippocampal morphology along an environmental gradient: controlling for the effects of day length". Proc. R. Soc. B, Vol 278, 2662-2667. [Crossref]
42. Roth T.C., Pravosudov V.V. (2009) "Hippocampal volumes and neuron numbers increase along a gradient of environmental harshness: a large-scale comparison". Proc. R. Soc. B, Vol 276, 401. [Crossref]
43. Safi K., Dechmann D. (2005) "Adaptations of brain regions to habitat complexity: a comparative analysis in bats (Chiroptera)". Proc. R. Soc. B, Vol 272, 179-186. [Crossref]
44. Savage V.M., Gillooly J.F., Brown J.H., West G.B., Charnov E.L. (2004) "Effects of body size and temperature on population growth". Am. Nat., Vol 163, 429-441. [Crossref]
45. Sayol F., Lefebvre L., Sol D. (2016) "Relative brain size and its relation with the associative pallium in birds". Brain Behav. Evol., Vol 87, 69-77. [Crossref]
46. Sayol F., Maspons J., Lapiedra O., Iwaniuk N.A., Székely T., Sol D. (2017) "Environmental variation and the evolution of large brains in birds". Nat. Comm., Vol 7, 13971.
47. Shi P.J., Ikemoto T., Ge F. (2011) "Development and application of models for describing the effects of temperature on insects’ growth and development". Chin. J. Appl. Entomol., Vol 48, 1149-1160.
48. Shultz S., Finlayson L.V. (2010) "Large body and small brain and group sizes are associated with predator preferences for mammalian prey". Behav. Ecol., Vol 21, 1073-1079. [Crossref]
49. Shultz S., Bradbury R.B., Evans K.L., Gregory R.D., Blackburn T.M. (2005) "Brain size and resource specialization predict long-term population trends in British birds". Proc. R. Soc. B, Vol 272, 2305-2311. [Crossref]
50. Sol D. (2009) "Revisiting the cognitive buffer hypothesis for the evolution of large brains". Biol. Lett., Vol 5, 130-133. [Crossref]
51. Sol D., Bacher S., Reader S.M., Lefebvre L. (2008) "Brain size predicts the success of mammal species introduced into novel environments". Am. Nat., Vol 172, S63-S71. [Crossref]
52. Sol D., Duncan R., Blackburn T., Cassey P., Lefebvre L. (2005) "Big brains, enhanced cognition, and response of birds to novel environments". Proc. Natl. Acad. Sci. USA, Vol 102, 5460-5465. [Crossref]
53. Sol D., Lefebvre L. (2000) "Behavioral flexibility predicts invasion success in birds introduced to New Zealand". Oikos, Vol 90, 599-605. [Crossref]
54. Sol D., Székely T., Liker A., Lefebvre L. (2007) "Big-brained birds survive better in nature". Proc. R. Soc. B, Vol 274, 763-769. [Crossref]
55. Striedter G.F. (2005) Principles of Brain Evolution. Sinauer Associates Inc., Sunderland.
56. Taylor G.M., Nol E., Boire D. (1995) "Brain regions and encephalization in anurans: adaptation or stability?" Brain Behav. Evol., Vol 45, 96-109. [Crossref]
57. Tomasello M. (1999) The Cultural Origins of Human Cognition. Harvard University Press, Cambridge, MA.
58. van der Bijl W., Thyselius M., Kotrschal A., Kolm N. (2015) "Brain size affects the behavioural response to predators in female guppies (Poecilia reticulata)". Proc. R. Soc. B, Vol 282, 116-124.
59. van Woerden J.T., van Schaik C.P., Isle K. (2010) "Effects of seasonality on brain size evolution: evidence from strepsirrhine primates". Am. Nat., Vol 176, 758-767. [Crossref]
60. van Woerden J.T., Willems E.P., van Schaik C.P., Isler K. (2011) "Large brains buffer energetic effects of seasonal habitats in catarrhine primates". Evolution, Vol 66, 191-199. [Crossref]
61. Vincze O., Vágási C.I., László Pap P., Moller A.P. (2015) "Brain regions associated with visual cues are important for bird migration". Biol. Lett., Vol 11, 20150678. [Crossref]
62. Vincze O. (2016) "Light enough to travel or wise enough to stay? Brain size evolution and migratory behavior in birds". Evolution, Vol 70, 2123-2133. [Crossref]
63. Wells K.D. (2007) The Ecology and Behavior of Amphibians. University of Chicago Press, Chicago, IL. [Crossref]
64. Wells K.D. (1977) "The social behaviour of anuran amphibians". Anim. Behav., Vol 25, 666-693. [Crossref]
65. West R.J.D. (2014) "The evolution of large brain size in birds is related to social, not genetic, monogamy". Biol. J. Linn. Soc., Vol 111, 668-678. [Crossref]
66. Wu Q.G., Lou S.L., Zeng Y., Liao W.B. (2016) "Spawning location promotes evolution of bulbus olfactorius size in anurans". Herpetol. J., Vol 26, 247-250.
67. Yang S.N., Huang X.F., Zhong M.J., Liao W.B. (2017) "Geographical variation in limb muscle mass of the Andrew’s toad (Bufo andrewsi)". Anim. Biol., Vol 67, 17-28. [Crossref]
68. Yopak E.K., Lisney T.J., Darlington R.B., Collin S.P., Montgomery J.C., Finlay B.L. (2010) "A conserved pattern of brain scaling from sharks to primates". Proc. Natl. Acad. Sci. USA, Vol 107, 12946-12951. [Crossref]
69. Zeng Y., Lou S.L., Liao W.B., Jehle R., Kotrschal A. (2016) "Sexual selection impacts brain anatomy in frogs and toads". Ecol. Evol., Vol 6, 7070-7079. [Crossref]
70. Zhang W.L., Zhang Y.J. (2010) "Modelling of the relationship between the frequency of large-scale outbreak of the beet armyworm, Spodopter aexigua (Lepidoptera: Noctuidae) and the wide-area temperature and rainfall trends in China". Acta Entomol. Sin., Vol 53, 1367-1381.
http://brill.metastore.ingenta.com/content/journals/10.1163/15707563-00002533
Loading

Article metrics loading...

/content/journals/10.1163/15707563-00002533
2017-11-28
2018-09-25

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Animal Biology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation