Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Cerebellum size is positively correlated with geographic distribution range in anurans

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Animal Biology

The ‘cognitive buffer’ hypothesis predicts that the costs of relatively large brains are compensated for later in life by the increased benefits of large brains providing a higher chance of survival under changing environments through flexible behaviors in the animal kingdom. Thus, animals that live in a larger range (with a higher probability of environmental variation) are expected to have larger brains than those that live in a restricted geographic range. Here, to test the prediction of the ‘cognitive buffer’ hypothesis that larger brains should be expected to occur in species living in geographic ranges of larger size, we analyzed the relationship between the size of the geographic range and brain size and the size of various brain regions among 42 species of anurans using phylogenetic comparative methods. The results show that there is no correlation between relative brain size and size of the species’ geographic range when correcting for phylogenetic effects and body size. Our findings suggest that the effects of the cognitive buffer and the energetic constraints on brains result in non-significant variation in overall brain size. However, the geographic range is positively correlated with cerebellum size, but not with optic tecta, suggesting that species distributed in a wider geographic range do not exhibit larger optic tecta which would provide behavioral flexibility to allow for an early escape from potential predators and discovery of new food resources in unpredictable environments.

Affiliations: 1: 1Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, Sichuan, China ; 2: 2Chengdu Institute Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China ; 3: 3Institute of Rare Animals and Plants, China West Normal University, Nanchong 637009, Sichuan, China

*Corresponding authors; e-mails:;

Full text loading...


Data & Media loading...

1. Allman J., McLaughlin T., Hakeem A. (1993) "Brain-weight and life-span in primate species". Proc. Natl Acad. Sci. USA, Vol 90, 118-122. [Crossref]
2. Amiel J.J., Tingley R., Shine R. (2011) "Smart moves: effects of relative brain size on establishment success of invasive amphibians and reptiles". PLoS One, Vol 6, e18277. [Crossref]
3. Barton R.A. (1998) "Visual specialization and brain evolution in primates". Proc. R. Soc. B, Vol 265, 1933-1937. [Crossref]
4. Barton R.A., Harvey P.H. (2000) "Mosaic evolution of brain structure in mammals". Nature, Vol 405, 1055-1058. [Crossref]
5. Berger J., Swenson J.E., Persson I.L. (2001) "Recolonizing carnivores and naive prey: conservation lessons from Pleistocene extinctions". Science, Vol 291, 1036-1039. [Crossref]
6. Chen C., Huang Y.Y., Liao W.B. (2016a) "A comparison of testes size and sperm length between Polypedates megacephalus populations at different altitudes". Herpetol. J., Vol 26, 249-252.
7. Chen M., Huang Y., Liu G., Qin F., Yang S., Xu X. (2016b) "Effects of enhanced UV-B radiation on morphology, physiology, biomass, leaf anatomy and ultrastructure in male and female mulberry (Morus alba) saplings". Environ. Exp. Bot., Vol 129, 85-93. [Crossref]
8. Darriba D., Taboada G.L., Doallo R., Posada D. (2012) "jModelTest 2: more models, new heuristics and parallel computing". Nat. Methods, Vol 9, 772. [Crossref]
9. Darwin C. (1871) The Origin of Species. John Murray, London, UK.
10. Deaner R.O., Barton R.A., van Schaik C.P. (2003) "Primate brains and life histories: renewing the connection". In: Kappeler P.M., Pereira M.E. (Eds) Primates Life Histories and Socioecology, pp.  233-265. University of Chicago Press, Chicago, IL, USA.
11. Drummond A.J., Suchard M.A., Xie D., Rambaut A. (2012) "Bayesian phylogenetics with BEAUti and the BEAST 1.7". Mol. Biol. Evol., Vol 29, 1969-1973. [Crossref]
12. Dukas R., Bernays E.A. (2000) "Learning improves growth rate in grasshoppers". Proc. Natl Acad. Sci. USA, Vol 97, 2637-2640. [Crossref]
13. Dukas R. (2004) "Evolutionary biology of animal cognition". Ann. Rev. Ecol. Evol. Syst., Vol 35, 347-374. [Crossref]
14. Dunbar R.I.M., Shultz S. (2007) "Evolution in the social brain". Science, Vol 317, 1344-1347. [Crossref]
15. Estes J.A., Tinker M.T., Williams T.M., Doak D.F. (1998) "Killer whale predation on sea otters linking oceanic and nearshore ecosystems". Science, Vol 282, 473-476. [Crossref]
16. Fei L., Ye C.Y. (2001) The Colour Handbook of Amphibians of Sichuan. China Forestry Publishing House, Beijing, China.
17. Freckleton R.P., Harvey P.H., Pagel M. (2002) "Phylogenetic analysis and comparative data: a test and review of evidence". Am. Nat., Vol 160, 712-726. [Crossref]
18. Garamszegi L.Z., Møller A.P., Erritzøe J. (2002) "Coevolving avian eye size and brain size in relation to prey capture and nocturnality". Proc. R. Soc. B, Vol 269, 961-967. [Crossref]
19. Gonda A., Trokovic N., Herczeg G., Laurila A., Merilä J. (2010) "Predation- and competition-mediated brain plasticity in Rana temporaria tadpoles". J. Evol. Biol., Vol 23, 2300-2308. [Crossref]
20. Gu J., Li D.Y., Luo Y., Ying S.B., Zhang L.Y., Shi Q.M., Chen J., Zhang S.P., Zhou Z.M., Liao W.B. (2017) "Brain size in Hylarana guentheri seems unaffected by variation in temperature and growth season". Anim. Biol., Vol 67, 209-225. [Crossref]
21. Iwaniuk A.N., Nelson J.E. (2001) "A comparative analysis of relative brain size in waterfowl (Anseriformes)". Brain Behav. Evol., Vol 57, 87-97. [Crossref]
22. Jerison H.J. (1973) Evolution of the Brain and Intelligence. Academic Press, New York, NY, USA.
23. Jiang A., Zhong M.J., Yang R.L., Liao W.B., Jehle R. (2015) "Seasonality and age is positively related to brain size in Andrew’s toad (Bufo andrewsi)". Evol. Biol., Vol 42, 339-348. [Crossref]
24. Jin L., Liu W.C., Li Y.H., Zeng Y., Liao W.B. (2015) "Evidence for the expensive-tissue hypothesis in the Omei wood frog (Rana omeimontis)". Herpetol. J., Vol 25, 127-130.
25. Jin L., Yang S.N., Liao W.B., Lüpold S. (2016) "Altitude underlies variation in the mating system, somatic condition and investment in reproductive traits in male Asian grass frogs (Fejervarya limnocharis)". Behav. Ecol. Sociobiol., Vol 70, 1197-1208. [Crossref]
26. Kotrschal A., Taborsky B. (2010) "Environmental change enhances cognitive abilities in fish". PLoS Biol., Vol 8, e1000351. [Crossref]
27. Kotrschal A., Zeng H.L., van der Bijl W., Öhman-Mägi C., Kotrschal K., Pelckmans K., Kolm N. (2017) "Evolution of brain region volumes during artificial selection for relative brain size". Evolution, Vol 71, 2942-2951. [Crossref]
28. Lefebvre L., Reader S.M., Sol D. (2004) "Brains, innovations and evolution in birds and primates". Brain Behav. Evol., Vol 63, 233-246. [Crossref]
29. Li Z.T., Guo B.C., Yang J., Herczeg G., Gonda A., Balázs G., Shikano T., Calboli F.C.F., Merilä J. (2017) "Deciphering the genomic architecture of the stickleback brain with a novel multilocus gene-mapping approach". Mol. Ecol., Vol 26, 1557-1575. [Crossref]
30. Liao W.B., Liu W.C., Merilä J. (2015a) "Andrew meets Rensch: sexual size dimorphism and the inverse of Rensch’s rule in Andrew’s toad (Bufo andrewsi)". Oecologia, Vol 177, 389-399. [Crossref]
31. Liao W.B., Lou S.L., Zeng Y., Merilä J. (2015b) "Evolution of anuran brains: disentangling ecological and phylogenetic sources of variation". J. Evol. Biol., Vol 28, 1986-1996. [Crossref]
32. Liao W.B., Luo Y., Lou S.L., Jehle R. (2016a) "Geographic variation in life-history traits: growth season affects age structure, egg size and clutch size in Andrew’s toad (Bufo andrewsi)". Front. Zool., Vol 13, 6. [Crossref]
33. Liao W.B., Lou S.L., Zeng Y., Kotrschal A. (2016b) "Large brains, small guts: the expensive tissue hypothesis supported in anurans". Am. Nat., Vol 188, 693-699. [Crossref]
34. Liao W.B., Huang Y., Zeng Y., Zhong M.J., Luo Y., Lüpold S. (2018) "Ejaculate evolution in external fertilizers: influenced by sperm competition or sperm limitation?" Evolution, Vol 72, 4-17. [Crossref]
35. Liu Q., Feng H., Jin L., Mi Z.P., Zhou Z.M., Liao W.B. (in press) "Latitudinal variation in body size in Fejervarya limnocharis supports the inverse of Bergmann’s rule". Anim. Biol. DOI:10.1163/15707563-17000129.
36. Luo Y., Zhong M.J., Huang Y., Li F., Liao W.B., Kotrschal A. (2017) "Seasonality and brain size are negatively associated in frogs: evidence for the expensive brain framework". Sci. Rep., Vol 7, 16629.
37. Lüpold S., Jin L., Liao W.B. (2017) "Population density and structure drive differential investment in pre- and post-mating sexual traits in frogs". Evolution, Vol 71, 1686-1699. [Crossref]
38. Ma X.H., Zhong M.J., Long J., Mi Z.P., Liao W.B. (2016) "Evolution in digestive tract in Bufo andrewsi associated with temperature and precipitation". Anim. Biol., Vol 66, 279-288. [Crossref]
39. Mai C.L., Liao J., Zhao L., Liu S.M., Liao W.B. (2017a) "Brain size evolution in the frog Fejervarya limnocharis does neither support the cognitive buffer nor the expensive brain framework hypothesis". J. Zool. Lond., Vol 302, 63-72. [Crossref]
40. Mai C.L., Liu Y.H., Jin L., Mi Z.P., Liao W.B. (2017b) "Altitudinal variation in somatic condition and investment in reproductive traits in male Yunnan pond frog (Pelophylax pleuraden)". Zool. Anz., Vol 266, 189-195. [Crossref]
41. Møller A.P., Erritzøe J. (2014) "Predator-prey interactions, flight initiation distance and brain size". J. Evol. Biol., Vol 27, 34-42. [Crossref]
42. Orme C.D.L., Freckleton R.P., Thomas G.H., Petzoldt T., Fritz S.A. (2012) Caper: comparative analyses of phylogenetics and evolution in R.
43. Pravosudov V.V., Clayton N.S. (2002) "A test of the adaptive specialization hypothesis: population differences in caching, memory, and the hippocampus in black-capped chickadees (Poecile atricapilla)". Behav. Neurosci., Vol 116, 515-522. [Crossref]
44. R Development Core Team (2016) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
45. Rambaut A., Suchard M.A., Xie D., Drummond A.J. (2014) Tracer v1.6. Available from
46. Ranade S.C., Rose A., Rao M., Gallego J., Gressens P., Mani S. (2008) "Different types of nutritional deficiencies affect different domains of spatial memory function checked in a radial arm maze". Neuroscience, Vol 152, 859-866. [Crossref]
47. Reader S.M., Laland K.N. (2002) "Social intelligence, innovation, and enhanced brain size in primates". Proc. Natl Acad. Sci. USA, Vol 99, 4436-4441. [Crossref]
48. Ricklefs R.E. (2004) "The cognitive face of avian life histories: the 2003 Margaret Morse Nice lecture". Wilson Bull., Vol 116, 119-133. [Crossref]
49. Rohlf F.J. (2004) TpsDig 1.40. Department of Ecology and Evolution, State University at Stony Brook, NY, USA.
50. Roth G., Dicke U. (2005) "Evolution of the brain and intelligence". Trends Cogn. Sci., Vol 9, 250-257. [Crossref]
51. Roth G., Walkowiak W. (2015) "The influence of genome and cell size on brain morphology in amphibians". Cold Spring Harb. Perspect. Biol., Vol 7, a019075. [Crossref]
52. Roth G., Blanke J., Wake D.B. (1994) "Cell size predicts morphological complexity in the brains of frogs and salamanders". Proc. Natl Acad. Sci. USA, Vol 91, 4796-4800. [Crossref]
53. Roth G., Nishikawa K.C., Wake D.B. (1997) "Genome size, secondary simplification, and the evolution of the brain in salamanders". Brain Behav. Evol., Vol 50, 50-59. [Crossref]
54. Roth T.C., Pravosudov V.V. (2009) "Hippocampal volumes and neuron numbers increase along a gradient of environmental harshness: a large-scale comparison". Proc. R. Soc. B, Vol 276, 401-405. [Crossref]
55. Roth T.C., LaDage L.D., Pravosudov V.V. (2010) "Learning capabilities enhanced in harsh environments: a common garden approach". Proc. R. Soc. B, Vol 277, 3187-3193. [Crossref]
56. Sayol F., Maspons J., Lapiedra O., Iwaniuk A.N., Székely T., Sol D. (2016) "Environmental variation and the evolution of large brains in birds". Nat. Commun., Vol 7, 13971. [Crossref]
57. Sol D. (2009) "Revisiting the cognitive buffer hypothesis for the evolution of large brains". Biol. Lett., Vol 5, 130-133. [Crossref]
58. Sol D., Duncan R.P., Blackburn T.M., Cassey P., Lefebvre L. (2005) "Big brains, enhanced cognition, and response of birds to novel environments". Proc. Natl Acad. Sci. USA, Vol 102, 5460-5465. [Crossref]
59. Sol D., Székely T., Liker A., Lefebvre L. (2007) "Big-brained birds survive better in nature". Proc. R. Soc. B, Vol 274, 755-761. [Crossref]
60. Striedter G.F. (2005) Principles of Brain Evolution. Sinauer Associates, Sunderland, MA, USA.
61. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013) "MEGA6: molecular evolutionary genetics analysis version 6.0". Mol. Biol. Evol., Vol 30, 2725-2729. [Crossref]
62. Taylor G.M., Nol E., Boire D. (1995) "Brain regions and encephalization in anurans: adaptation or stability?" Brain Behav. Evol., Vol 45, 96-109. [Crossref]
63. van Woerden J.T., van Schaik C.P., Isler K. (2010) "Effects of seasonality on brain size evolution: evidence from strepsirrhine primates". Am. Nat., Vol 176, 758-767. [Crossref]
64. van Woerden J.T., Willems E.P., van Schaik C.P., Isler K. (2011) "Large brains buffer energetic effects of seasonal habitats in catarrhine primates". Evolution, Vol 66, 191-199. [Crossref]
65. van Woerden J.T., van Schaik C.P., Isler K. (2014) "Brief communication: seasonality of diet composition is related to brain size in new world monkeys". Am. J. Phys. Anthropol., Vol 154, 628-632. [Crossref]
66. Vincze O. (2016) "Light enough to travel or wise enough to stay? Brain size evolution and migratory behavior in birds". Evolution, Vol 70, 2123-2133. [Crossref]
67. Vincze O., Vágási C.I., Pap P.L., Osváth G., Møller A.P. (2015) "Brain regions associated with visual cues are important for bird migration". Biol. Lett., Vol 11, 20150678. [Crossref]
68. Wu Q.G., Lou S.L., Zeng Y., Liao W.B. (2016) "Spawning location promotes evolution of bulbus olfactorius size in anurans". Herpetol. J., Vol 26, 247-250.
69. Yang S.N., Huang X.F., Zhong M.J., Liao W.B. (2017) "Geographical variation in limb muscle mass of the Andrew’s toad (Bufo andrewsi)". Anim. Biol., Vol 67, 17-28. [Crossref]
70. Yang S.N., Feng H., Jin L., Zhou Z.M., Liao W.B. (in press) "No evidence for the expensive-tissue hypothesis in Fejervarya limnocharis". Anim. Biol. DOI:10.1163/15707563-17000094.
71. Yopak E.K., Lisney T.J., Darlington R.B., Collin S.P., Montgomery J.C., Finlay B.L. (2010) "A conserved pattern of brain scaling from sharks to primates". Proc. Natl Acad. Sci. USA, Vol 107, 12946-12951. [Crossref]
72. Yopak K.E., Lisney T.J., Collin S.P., Montgomery J.C. (2007) "Variation in brain organization and cerebellar foliation in chondrichthyans: sharks and holocephalans". Brain Behav. Evol., Vol 69, 280-300. [Crossref]
73. Yu X., Zhong M.J., Li D.Y., Jin L., Liao W.B., Kotrschal A. (in press) "Large-brained frogs mature later and live longer". Evolution. DOI:10.1111/evo.13478.
74. Zeng Y., Lou S.L., Liao W.B., Jehle R., Kotrschal A. (2016) "Sexual selection impacts brain anatomy in frogs and toads". Ecol. Evol., Vol 6, 7070-7079. [Crossref]
75. Zhao L., Mao M., Liao W.B. (2016) "No evidence for the ‘expensive-tissue hypothesis’ in the dark-spotted frog, Pelophylax nigromaculatus". Acta Herpetol., Vol 11, 69-73.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Animal Biology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation