Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Latitudinal variation in body size in Fejervarya limnocharis supports the inverse of Bergmann’s rule

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Animal Biology

Bergmann’s rule states that within a species of endotherms smaller individuals are found in warmer conditions, which is consistent for nearly all endotherms, while in ectotherms body size patterns are less consistent. As ectothermic vertebrates, the morphology of amphibians is likely impacted by climatic conditions. Here, we examined latitudinal variation in body size in the ranid frog, Fejervarya limnocharis, based on literature and our own data on mean body size of 3637 individuals from 50 populations and average age of 2873 individuals from 40 populations in China. The results showed that body size was positively correlated with environmental temperature, but not with precipitation. Body size was negatively correlated with latitude among populations in this species, which supported the inverse of Bergmann’s rule. Our findings suggest that a larger body size in low-latitude populations is associated with a longer growing season related to the higher environmental temperature.

Affiliations: 1: 1Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China ; 2: 2Institute of Eco-Adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, Sichuan, China

*Corresponding authors; e-mail:;

Full text loading...


Data & Media loading...

1. Arnett A.E., Gotelli N.J. (1999) "Geographic variation in life-history traits of the ant lion (Myrmeleon immaculatus): evolutionary implications of Bergmann’s rule". Evolution, Vol 53, 1180-1188.
2. Ashton K.G. (2002) "Do amphibians follow Bergmann’s rule?" Can. J. Zool., Vol 80, 708-716. [Crossref]
3. Ashton K.G., Feldman C.R. (2003) "Bergmann’s rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it". Evolution, Vol 57, 1151-1163. [Crossref]
4. Ashton K.G., Tracy M.C., de Queiroz A. (2000) "Is Bergmann’s rule valid for mammals?" Am. Nat., Vol 156, 390-415.
5. Atkinson D., Sibly R.M. (1997) "Why are organisms usually bigger in colder environments? Making sense of a life history puzzle". Trends Ecol. Evol., Vol 12, 235-239. [Crossref]
6. Beck E., Kottke I., Bendix J., Makeschin F., Mosandl R. (2008) "Gradients in a tropical mountain ecosystem – a synthesis". In: Beck E., Kottke I., Bendix J., Makeschin F., Mosandl R. (Eds) Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecological Studies (Analysis and Synthesis), Vol vol. 198, pp.  451-463. Springer Verlag, Berlin, Germany. [Crossref]
7. Belk C.M., Houston D.D. (2002) "Bergmann’s rule in ectotherms: a test using freshwater fishes". Am. Nat., Vol 160, 803-808.
8. Bergmann C. (1847) "Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Größe". In: Göttinger Studien, Vol vol. 3, pp.  595-708. Vandenhoeck & Ruprecht, Göttingen, Germany.
9. Bernardo J., Reagan-Wallin N.L. (2002) "Plethodontid salamanders do not conform to “general rules” for ectotherm life histories: insights from allocation models about why simple models do not make accurate predictions". Oikos, Vol 97, 398-414. [Crossref]
10. Berven K.A. (1982) "The genetic basis of altitudinal variation in the wood frog, Rana sylvatica. II. An experimental analysis of larval development". Oecologia, Vol 52, 360-369. [Crossref]
11. Berven K.A., Gill D.E., Smith-Gill S.J. (1979) "Counter-gradient selection in the green frog, Rana clamitans". Evolution, Vol 33, 609-623. [Crossref]
12. Blackburn T.M., Hawkins B.A. (2004) "Bergmann’s rule and the mammal fauna of northern North America". Ecography, Vol 27, 715-724. [Crossref]
13. Boyce M.S. (1979) "Seasonality and patterns of natural selection for life histories". Am. Nat., Vol 114, 569-583. [Crossref]
14. Brown J.H., Marquet P.A., Taper M.L. (1993) "Evolution of body size: consequences of an energetic definition of fitness". Am. Nat., Vol 142, 573-584. [Crossref]
15. Chen X.H., Yang J., Qiao L., Zhang L.X., Lu X. (2011) "Reproductive ecology of the stream-dwelling frog Feirana taihangnicus in central China". Herpetol. J., Vol 21, 135-140.
16. Cvetković D., Tomašević N., Ficetola G.F., Crnobrnja-Isailović J., Miaud C. (2009) "Bergmann’s rule in amphibians: combining demographic and ecological parameters to explain body size variation among populations in the common toad Bufo bufo". J. Zool. Syst. Evol. Res., Vol 47, 171-180. [Crossref]
17. Dziminski M.A., Vercoe P.E., Roberts J.D. (2009) "Variable offspring provisioning and fitness: a direct test in the field". Funct. Ecol., Vol 23, 164-171. [Crossref]
18. Eaton B.R., Paszkowski C.A., Kristensen K., Hiltz M. (2005) "Life-history variation among populations of Canadian toads in Alberta, Canada". Can. J. Zool., Vol 83, 1421-1430. [Crossref]
19. Fei L., Ye C.Y. (2001) The Colour Handbook of Amphibians of Sichuan. China Forestry Publishing House, Beijing, China.
20. Feldman A., Meiri S. (2014) "Australian snakes do not follow Bergmann’s rule". Evol. Biol., Vol 41, 327-335. [Crossref]
21. Ficetola G.F., Maiorano L. (2016) "Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance". Oecologia, Vol 181, 683-693. [Crossref]
22. Geist V. (1987) "Bergmann’s rule is invalid". Can. J. Zool., Vol 65, 1035-1038. [Crossref]
23. Gu J., Li D.Y., Luo Y., Ying S.B., Zhang L.Y., Shi Q.M., Chen J., Zhang S.P., Zhou Z.M., Liao W.B. (2017) "Brain size in Hylarana guentheri seems unaffected by variation in temperature and growth season". Anim. Biol., Vol 67, 209-225. [Crossref]
24. Huang Y., Zhu H.Q., Liao Y.M., Jin L., Liao W.B. (2013) "Age structure, size and growth of a high-altitude Bell toad in subtropical montane in southwestern China". Herpetol. J., Vol 23, 229-232.
25. James F.C. (1970) "Geographic size variation in birds and its relationship to climate". Ecology, Vol 51, 365-390. [Crossref]
26. Jin L., Yang S.N., Liao W.B., Lüpold S. (2016) "Altitude underlies variation in the mating system, somatic condition, and investment in reproductive traits in male Asian grass frogs (Fejervarya limnocharis)". Behav. Ecol. Sociobiol., Vol 70, 1197-1208. [Crossref]
27. Kaplan H.R., King G.E. (1997) "Egg size is a developmentally plastic trait: evidence from long term studies in the frog Bombina orientalis". Herpetologica, Vol 53, 149-165.
28. Kearney M., Shine R., Porter W.P. (2009) "The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming". Proc. Natl Acad. Sci. USA, Vol 106, 3835-3840. [Crossref]
29. Kubota U., Loyola R.D., Almeida A.M., Carvalho D.A., Lewinsohn T.M. (2007) "Body size and host range co-determine the altitudinal distribution of Neotropical tephritid flies". Global. Ecol. Biogeogr., Vol 16, 632-639. [Crossref]
30. Laugen A.T., Laurila A., Räsänen K., Merilä J. (2003) "Latitudinal countergradient variation in the common frog (Rana temporaria) developmental rates – evidence for local adaptation". J. Evol. Biol., Vol 16, 996-1005. [Crossref]
31. Laugen A.T., Laurila A., Jönsson K.I., Söderman F., Merilä J. (2005) "Do common frogs (Rana temporaria) follow Bergmann’s rule?" Evol. Ecol. Res., Vol 7, 717-731.
32. Laurila A., Pakkasmaa S., Meriä J. (2001) "Influence of seasonal time constraints on growth and development of common frog tadpoles: a photoperiod experiment". Oikos, Vol 95, 451-460. [Crossref]
33. Li Y.M., Xu F., Guo Z.W., Liu X., Jin C.N., Wang Y.P., Wang S.P. (2011) "Reduced predator species richness drives the body gigantism of a frog species on the Zhoushan Archipelago in China". J. Anim. Ecol., Vol 80, 171-172. [Crossref]
34. Li S.T., Wu X., Li D.Y., Lou S.L., Mi Z.P., Liao W.B. (2013) "Body size variation of odorous frog (Odorrana grahami) across altitudinal gradients". Herpetol. J., Vol 23, 187-192.
35. Liao W.B. (2013) "Evolution of sexual size dimorphism in a frog obeys the inverse of Rensch’s rule". Evol. Biol., Vol 40, 493-499. [Crossref]
36. Liao W.B., Lu X. (2010) "Age structure and body size of the Chuanxi tree toad Hyla annectans chuanxiensis from two different elevations (China)". Zool. Anz., Vol 248, 255-263. [Crossref]
37. Liao W.B., Lu X. (2012) "Adult body size=f(initial size+growth rate×age): explaining the proximate cause of Bergman’s cline in a toad along altitudinal gradients". Evol. Ecol., Vol 26, 579-590. DOI:10.1007/s10682-011-9501-y. [Crossref]
38. Liao W.B., Zhou C.Q., Yang Z.S., Hu J.C., Lu X. (2010) "Age, size and growth in two populations of the dark-spotted frog Rana nigromaculata at different altitudes in southwestern China". Herpetol. J., Vol 20, 77-82.
39. Liao W.B., Lu X., Shen Y.W., Hu J.C. (2011) "Age structure and body size of two populations of the rice frog Rana limnocharis from different altitudes". Ital. J. Zool., Vol 78, 215-228. [Crossref]
40. Liao W.B., Liu W.C., Merilä J. (2015) "Andrew meets Rensch: sexual size dimorphism and the inverse of Rensch’s rule in Andrew’s toad (Bufo andrewsi)". Oecologia, Vol 177, 389-399. [Crossref]
41. Liao W.B., Luo Y., Lou S.L., Lu D., Jehle R. (2016a) "Geographic variation in life-history traits: growth season affects age structure, egg size and clutch size in Andrew’s toad (Bufo andrewsi)". Front. Zool., Vol 13, 6. DOI:10.1186/s12983-016-0138-0. [Crossref]
42. Liao W.B., Lou S.L., Zeng Y., Kotrschal A. (2016b) "Large brains, small guts: the expensive tissue hypothesis supported in anurans". Am. Nat., Vol 188, 693-699. [Crossref]
43. Liao W.B., Huang Y., Zeng Y., Zhong M.J., Luo Y., Lüpold S. (2018) "Ejaculate evolution in external fertilizers: influenced by sperm competition or sperm limitation". Evolution, Vol 72, 4-17. [Crossref]
44. Lindsey C.C. (1966) "Body sizes of poikilotherm vertebrates at different latitudes". Evolution, Vol 20, 456-465. [Crossref]
45. Liu Y.H., Liao W.B., Zhou C.Q., Mi Z.P. (2012) "Altitudinal variation in body size in the rice frog (Rana limnocharis) in southwestern China". Acta Herpetol., Vol 7, 57-68.
46. Lu X., Li B., Liang J.J. (2006) "Comparative demography of a temperate anuran, Rana chensinensis, along a relatively fine altitudinal gradient". Can. J. Zool., Vol 84, 1789-1795. [Crossref]
47. Luo Y., Zhong M.J., Huang Y., Li F., Liao W.B., Kotrschal A. (2017) "Seasonality and brain size are negatively associated in frogs: evidence for the expensive brain framework". Sci. Rep., Vol 7, 16629. DOI:10.1038/s41598-017-16921-1.
48. Lüpold S., Jin L., Liao W.B. (2017) "Population density and structure drive differential investment in pre- and postmating sexual traits in frogs". Evolution, Vol 71, 1686-1699. [Crossref]
49. Ma X.Y., Lu X., Merilä J. (2009a) "Altitudinal decline of body size in a Tibetan frog Nanorana parkeri". J. Zool., Vol 279, 364-371. [Crossref]
50. Ma X.Y., Tong L.N., Lu X. (2009b) "Variation of body size, age structure and growth of a temperate frog, Rana chensinensis, over an altitudinal gradient in northern China". Amphib. Reptil., Vol 30, 111-117. [Crossref]
51. Mai C.L., Liao J., Zhao L., Liu S.M., Liao W.B. (2017) "Brain size evolution in the frog Fejervarya limnocharis does neither support the cognitive buffer nor the expensive brain framework hypothesis". J. Zool., Vol 302, 63-72. [Crossref]
52. Matthews R.K., Miaud C. (2007) "A skeletochronological study of the age structure, growth, and longevity of the mountain yellow-legged frog, Rana muscosa, in the sierra Nevada, California". Copeia, Vol 4, 986-993. [Crossref]
53. McGill B.J., Enquist B.J., Weiher E., Westoby M. (2006) "Rebuilding community ecology from functional traits". Trends Ecol. Evol., Vol 21, 178-185. [Crossref]
54. McNab B.K. (1971) "On the ecological significance of Bergmann’s rule". Ecology, Vol 52, 845-854. [Crossref]
55. Meiri S., Dayan T. (2003) "On the validity of Bergmann’s rule". J. Biogeogr., Vol 30, 331-351. [Crossref]
56. Meiri S., Thomas G.H. (2007) "The geography of body size-challenges of the interspecific approach". Glob. Ecol. Biogeogr., Vol 16, 689-693. [Crossref]
57. Meiri S., Meijaard E., Wich S., Groves C., Helgen K. (2008) "Mammals of Borneo – small size on a large island". J. Biogeogr., Vol 35, 1087-1094. [Crossref]
58. Morrison C., Hero J.M. (2003) "Geographic variation in life-history characteristics of amphibians: a review". J. Anim. Ecol., Vol 72, 270-279. [Crossref]
59. Olalla-Tarraga M.A., Rodriguez M.A., Hawkins B.A. (2006) "Broad-scale patterns of body size in squamate reptiles of Europe and North America". J. Biogeogr., Vol 33, 781-793. [Crossref]
60. Olson V.A., Davies R.G., Orme C.D., Thomas G.H., Meiri S., Blackburn T.M., Gaston K.J., Owens I.P., Bennett P.M. (2009) "Global biogeography and ecology of body size in birds". Ecol. Lett., Vol 12, 249-259. [Crossref]
61. Ørsted M., Rohde P.D., Hoffmann A.A., Sørensen P., Kristensen T.N. (2018) "Environmental variation partitioned into separate heritable components". Evolution, Vol 72, 136-152. [Crossref]
62. Rollinson N., Rowe L. (2018) "Temperature-dependent oxygen limitation and the rise of Bergmann’s rule in species with aquatic respiration". Evolution. DOI:10.1111/evo.13458.
63. Schmidt-Nielsen K. (1984) Scaling: why Is Animal Size so Important? Cambridge University Press, New York, NY, USA. [Crossref]
64. Shelomi R. (2012) "Where are we now? Bergmann’s rule sensu lato in insects". Am. Nat., Vol 180, 511-519. [Crossref]
65. Shi L.Q., Zhang X.Q., Ma X.M. (2011) "Ontogeny in sexual dimorphism and female reproduction of rice frog Fejervarya limnocharis". Chin. J. Ecol., Vol 30, 717-723.
66. Shou H.L., Du W.G., Shu L. (2005) "Sexual dimorphism and fecundity in the gold-stripe pond frog (Pelophylax plancyi) and the terrestrial frog (Fejervarya limnocharis)". Acta Ecol. Sin., Vol 25, 664-668.
67. Sinsch U., Marangoni F., Oromi N., Leskovar C., Sanuy D., Tejedo M. (2010) "Proximate mechanisms determining size variability in natterjack toads". Zoology, Vol 281, 272-281.
68. Turbill C., Bieber C., Ruf T. (2011) "Hibernation is associated with increased survival and the evolution of slow life histories among mammals". Proc. R. Soc. B., Vol 278, 3355-3363. [Crossref]
69. Ulrich W., Fiera C. (2010) "Environmental correlates of body size distributions of European springtails (Hexapoda: Collembola)". Glob. Ecol. Biogeogr., Vol 19, 905-915. [Crossref]
70. Von Bertalanffy L. (1957) "Quantitative laws in metabolism and growth". Q. Rev. Biol., Vol 32, 217-231. [Crossref]
71. Wells K.D. (2007) The Ecology and Behavior of Amphibians. University of Chicago Press, Chicago, IL, USA. [Crossref]
72. Wu Z.J., Li Y.M., Murray B. (2006) "Insular shifts in body size of rice frogs in the Zhoushan Archipelago". J. Anim. Ecol., Vol 75, 1071-1080. [Crossref]
73. Xiong H.L., Liu Y., Qin L.J., Xiong Z.B. (2010) "Breeding ecology of Fejervarya multistriata in Maolan Region". Sichuan J. Zool., Vol 29, 353-359.
74. Yom-Tov Y. (2001) "Global warming and body mass decline in Israeli passerine birds". Proc. R. Soc. B., Vol 268, 947-952. [Crossref]
75. Yom-Tov Y., Geffen E. (2011) "Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls". Biol. Rev., Vol 86, 531-541. [Crossref]

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Animal Biology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation