Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Marked intra-genomic variation and pseudogenes in the ITS1-5.8S-ITS2 rDNA of Symphurus plagiusa (Pleuronectiformes: Cynoglossidae)

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Animal Biology

The eukaryotic ribosomal DNA (rDNA) cluster consists of multiple copies of three genes (18S, 5.8S, and 28S rDNA) and two internal transcribed spacers (ITS1 and ITS2). In recent years, an increasing number of rDNA sequence polymorphisms have been identified in numerous species. In the present study, we provide 33 complete ITS (ITS1-5.8S-ITS2) sequences from two Symphurus plagiusa individuals. To the best of our knowledge, these sequences are the first detailed information on ITS sequences in Pleuronectiformes. Here, two divergent types (Type A and B) of the ITS1-5.8S-ITS2 rDNA sequence were found, which mainly differ in sequence length, GC content, nucleotide diversity (π), secondary structure and minimum free energy. The ITS1-5.8S-ITS2 rDNA sequence of Type B was speculated to be a putative pseudogene according to pseudogene identification criteria. Cluster analysis showed that sequences from the same type clustered into one group and two major groups were formed. The high degree of ITS1-5.8S-ITS2 sequence polymorphism at the intra-specific level indicated that the S. plagiusa genome has evolved in a non-concerted evolutionary manner. These results not only provide useful data for ribosomal pseudogene identification, but also further contribute to the study of rDNA evolution in teleostean genomes.

Affiliations: 1: 1National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, 316022, Zhoushan, China ; 2: 2National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, 316022, Zhoushan, China ; 3: 3Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510000, Guangzhou, China ; 4: 4South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, 510000, Guangzhou, China

*Corresponding author; e-mail:

Full text loading...


Data & Media loading...

1. Álvarez I., Wendel J.F. (2003) "Ribosomal ITS sequences and plant phylogenetic inference". Mol. Phylogenet. Evol., Vol 29, 417-434. [Crossref]
2. Bailey C.D., Carr T.G., Harris S.A., Hughes C.E. (2003) "Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes". Mol. Phylogenet. Evol., Vol 29, 435-455. [Crossref]
3. Bargues M.D., Zuriaga M.A., Mas-Coma S. (2014) "Nuclear rDNA pseudogenes in Chagas disease vectors: evolutionary implications of a new 5.8S+ITS-2 paralogous sequence marker in triatomines of north, central and northern South America". Infect. Genet. Evol., Vol 21, 134-156. [Crossref]
4. Buckler E.S., Ippolito A., Holtsford T.P. (1997) "The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications". Genetics, Vol 145, 821-832.
5. Chow S., Ueno Y., Toyokawa M., Oohara I., Takeyama H. (2009) "Preliminary analysis of length and GC content variation in the ribosomal first internal transcribed spacer (ITS1) of marine animals". Mar. Biotechnol., Vol 11, 301-306. [Crossref]
6. Coleman A.W., Vacquier V.D. (2002) "Exploring the phylogenetic utility of ITS sequences for animals: a test case for abalone (Haliotis)". J. Mol. Evol., Vol 54, 246-257. [Crossref]
7. Eickbush T.H., Eickbush D.G. (2007) "Finely orchestrated movements: evolution of the ribosomal RNA genes". Genetics, Vol 175, 477-485. [Crossref]
8. Freire R., Arias A., Méndez J., Insua A. (2010) "Sequence variation of the internal transcribed spacer (ITS) region of ribosomal DNA in Cerastoderma species (Bivalvia: Cardiidae)". J. Molluscan Stud., Vol 76, 77-86. [Crossref]
9. Gong L., Shi W., Yang M., Si L., Kong X. (2016a) "Long duplication of 18S ribosomal DNA in Cynoglossus lineolatus (Pleuronectiformes: Cynoglossidae): novel molecular evidence for unequal crossing over model". Acta Oceanol. Sin., Vol 35, 38-50. [Crossref]
10. Gong L., Shi W., Yang M., Si L., Kong X. (2016b) "Non-concerted evolution in ribosomal ITS2 sequence in Cynoglossus zanzibarensis (Pleuronectiformes: Cynoglossidae)". Biochem. Syst. Ecol., Vol 66, 181-187. [Crossref]
11. Grimm G.W., Denk T. (2008) "ITS evolution in Platanus (Platanaceae): homoeologues, pseudogenes and ancient hybridization". Ann. Bot., Vol 101, 403-419. [Crossref]
12. Guindon S., Gascuel O. (2003) "A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood". Syst. Biol., Vol 52, 696-704. [Crossref]
13. Hall T.A. (1999) "BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT". Nucleic Acids Symp. Ser., Vol 41, 95-98.
14. Harpke D., Peterson A. (2006) "Non-concerted ITS evolution in Mammillaria (Cactaceae)". Mol. Phylogenet. Evol., Vol 41, 579-593. [Crossref]
15. Harpke D., Peterson A. (2007) "Quantitative PCR revealed a minority of ITS copies to be functional in Mammillaria (Cactaceae)". Int. J. Plant Sci., Vol 168, 1157-1160. [Crossref]
16. Harpke D., Peterson A. (2008a) "Extensive 5.8 S nrDNA polymorphism in Mammillaria (Cactaceae) with special reference to the identification of pseudogenic internal transcribed spacer regions". J. Plant Res., Vol 121, 261-270. [Crossref]
17. Harpke D., Peterson A. (2008b) "5.8S motifs for the identification of pseudogenic ITS regions". Botany, Vol 86, 300-305. [Crossref]
18. Hoy M.S., Rodriguez R.J. (2013) "Intragenomic sequence variation at the ITS1-ITS2 region and at the 18S and 28S nuclear ribosomal DNA genes of the New Zealand mud snail, Potamopyrgus antipodarum (Hydrobiidae: Mollusca)". J. Molluscan Stud., Vol 79, 205-217. [Crossref]
19. Hribova E., Cizkova J., Christelova P., Taudien S., de Langhe E., Dolezel J. (2011) "The ITS1-5.8S-ITS2 sequence region in the Musaceae: structure, diversity and use in molecular phylogeny". PLoS One, Vol 6, e17863. [Crossref]
20. Huelsenbeck J.P., Ronquist F. (2001) "MRBAYES: Bayesian inference of phylogenetic trees". Bioinformatics, Vol 17, 754-755. [Crossref]
21. Hugall A., Stanton J., Moritz C. (1999) "Reticulate evolution and the origins of ribosomal internal transcribed spacer diversity in apomictic Meloidogyne". Mol. Biol. Evol., Vol 16, 157-164. [Crossref]
22. Johansen T., Repolho T., Hellebø A., Raae A.J. (2006) "Strict conservation of the ITS regions of the ribosomal RNA genes in Atlantic cod (Gadus morhua L.)". Dna Seq., Vol 17, 107-114. [Crossref]
23. Krieger J., Hett A.K., Fuerst P.A., Birstein V.J., Ludwig A. (2006) "Unusual intraindividual variation of the nuclear 18S rRNA gene is widespread within the Acipenseridae". J. Hered., Vol 97, 218-225. [Crossref]
24. Kumar R., Singh M., Kushwaha B., Nagpure N., Mani I., Lakra W. (2013) "Molecular characterization of major and minor rDNA repeats and genetic variability assessment in different species of mahseer found in north India". Gene, Vol 527, 248-258. [Crossref]
25. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. (2007) "Clustal W and Clustal X version 2.0". Bioinformatics, Vol 23, 2947-2948. [Crossref]
26. Li Y., Jiao L., Yao Y.-J. (2013) "Non-concerted ITS evolution in fungi, as revealed from the important medicinal fungus Ophiocordyceps sinensis". Mol. Phylogenet. Evol., Vol 68, 373-379. [Crossref]
27. Librado P., Rozas J. (2009) "DnaSP v5: a software for comprehensive analysis of DNA polymorphism data". Bioinformatics, Vol 25, 1451-1452. [Crossref]
28. Long E.O., Dawid I.B. (1980) "Repeated genes in eukaryotes". Annu. Rev. Biochem., Vol 49, 727-764. [Crossref]
29. Márquez L.M., Miller D.J., MacKenzie J.B., van Oppen M.J. (2003) "Pseudogenes contribute to the extreme diversity of nuclear ribosomal DNA in the hard coral Acropora". Mol. Biol. Evol., Vol 20, 1077-1086. [Crossref]
30. Mashkova T., Serenkova T., Mazo A., Avdonina T., Timofeyeva M.Y., Kisselev L. (1981) "The primary structure of oocyte and somatic 5S rRNAs from the loach Misgurnus fossilis". Nucleic Acids Res., Vol 9, 2141-2152. [Crossref]
31. Mullins J., Fultz P. (1991) "Evidence for biased gene conversion in concerted evolution of ribosomal DNA". Science, Vol 251(4991), 308-310. [Crossref]
32. Naidoo K., Steenkamp E.T., Coetzee M.P., Wingfield M.J., Wingfield B.D. (2013) "Concerted evolution in the ribosomal RNA cistron". PLoS One, Vol 8, e59355.
33. Peterson R.C., Doering J.L., Brown D.D. (1980) "Characterization of two Xenopus somatic 5S DNAs and one minor oocyte-specific 5S DNA". Cell, Vol 20, 131-141. [Crossref]
34. Rampersad S.N. (2014) "ITS1, 5.8S and ITS2 secondary structure modelling for intra-specific differentiation among species of the Colletotrichum gloeosporioides sensu lato species complex". SpringerPlus, Vol 3, 684.
35. Reed K.M., Phillips R.B. (2000) "Structure and organization of the rDNA intergenic spacer in lake trout (Salvelinus namaycush)". Chromosome Res., Vol 8, 5-16. [Crossref]
36. Sajdak S.L., Phillips R.B. (1997) "Phylogenetic relationships among Coregonus species inferred from the DNA sequence of the first internal transcribed spacer (ITS1) of ribosomal DNA". Can. J. Fish. Aquat. Sci., Vol 54, 1494-1503. [Crossref]
37. Symonová R., Ocalewicz K., Kirtiklis L., Delmastro G.B., Pelikánová Š., Garcia S., Kovařík A. (2017) "Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.)". BMC Genomics, Vol 18, 391. [Crossref]
38. Szostak J.W., Wu R. (1980) "Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae". Nature, Vol 284(5755), 426-430. [Crossref]
39. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. (2011) "MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods". Mol. Biol. Evol., Vol 28, 2731-2739. [Crossref]
40. Wegnez M., Monier R., Denis H. (1972) "Sequence heterogeneity of 5 S RNA in Xenopus laevis". FEBS Lett., Vol 25, 13-20. [Crossref]
41. Weider L.J., Elser J.J., Crease T.J., Mateos M., Cotner J.B., Markow T.A. (2005) "The functional significance of ribosomal (r) DNA variation: impacts on the evolutionary ecology of organisms". Annu. Rev. Ecol. Evol. Syst., Vol 36, 219-242. [Crossref]
42. Xu J., Zhang Q., Xu X., Wang Z., Qi J. (2009) "Intragenomic variability and pseudogenes of ribosomal DNA in stone flounder Kareius bicoloratus". Mol. Phylogenet. Evol., Vol 52, 157-166. [Crossref]
43. Zhuo L., Reed K.M., Phillips R.B. (1995) "Hypervariability of ribosomal DNA at multiple chromosomal sites in lake trout (Salvelinus namaycush)". Genome, Vol 38, 487-496. [Crossref]
44. Zuriaga M.A., Mas-Coma S., Bargues M.D. (2015) "A nuclear ribosomal DNA pseudogene in triatomines opens a new research field of fundamental and applied implications in Chagas disease". Mem. Inst. Oswaldo Cruz, Vol 110, 353-362. [Crossref]

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Animal Biology — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation