Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Numerical Simulation of Wave Propagation Phenomena in Fluid-Saturated Two-Phase Porous Media

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multidiscipline Modeling in Materials and Structures

The governing equations for dynamic transient analysis of a fluid-saturated two-phase porous medium model based on the mixture theory are presented. A penalty finite element formulation is derived with the general Galerkin procedure of the finite element method (FEM), and the obtained dynamic system equation can be solved with implicit or explicit time integration method, which is discussed in this paper. Using this method, a porous medium column under impulsive loading is analyzed and the results reveal the phenomena of one-dimensional wave propagation, which are consistent with analytical solutions. Furthermore, two numerical examples of two-dimensional problems demonstrate the existence of two body waves, i.e. longitudinal (P-type) and transverse (S-type) waves in porous media, and the Rayleigh wave in the vicinity of the surface of porous media.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multidiscipline Modeling in Materials and Structures — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation