Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Homogenization-Based FEM Study of Transient Heat Transfer in Some Composite Materials

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multidiscipline Modeling in Materials and Structures

Effectiveness of the homogenization method for various heat transfer problems of engineering composites is the main aim of the paper. This comparative study is done for layered, fiber and particle reinforced Representative Volume Elements (RVE) for composites made of widely used components. Mathematical model is based on the effective modules method introduced for periodic composites - effective heat conductivity is calculated in the closed form for specific spatial distribution of the components, while effective volumetric heat capacity is obtained from a simple spatial averaging. Such a homogenization scheme makes possible to significantly simplify the numerical analysis of transient heat transfer phenomena in various types of composites. The comparison of temperature histories obtained for the real and homogenized composite models is carried out using the Finite Element Method system ANSYS. As is demonstrated for various boundary problems, a homogenization technique in terms of composites types collected in the paper give satisfactory agreement with the real structure modeling; further numerical studies on composite cells discretization should increase modeling efficiency and diminish the numerical errors.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multidiscipline Modeling in Materials and Structures — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation