Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Time Evolution of Current and Deformation of Ion-Exchange Polymer/metal Composite Actuators

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multidiscipline Modeling in Materials and Structures

This paper describes the development and the numerical analysis of an electrochemical model for the analysis of a novel polymer/metal composite actuator. A general continuum model describing the transport and deformation processes of these actuators is briefly presented, along with a detailed description of the simulation scheme used to predict deformation, current, and mass transport. The predictions of the model are compared with experimental data, indicating a significant role of water transport in the large-scale deformation. Comparison of the simulations and experimental data showed good agreement confirming the central role of water transport in the deformation process. For the sake of completeness the fabrication process and testing apparatus are also described.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multidiscipline Modeling in Materials and Structures — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation