Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Development of a Versatile Kinetic Monte Carlo Code to Simulate Physical Processes in Thin Film Nucleation and Growth

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multidiscipline Modeling in Materials and Structures

Thin film development and nanoscale oxidation studies have been of great interest recent years. Nucleation rate theory[1-3] has been successfully used to describe metal heteroepitaxy [4] and qualitatively explained the initial stage of oxidation behavior[5]. To further quantitative understanding of these nano-scale processes and the morphology evolution in general gas-metal reactions and thin film development, a powerful simulation tool is urgently needed. The Thin Film Oxidation (TFOx) model is an atomistic Kinetic Monte Carlo (KMC) model, which has been developed of this purpose. The TFOx model includes all of the relevant microscopic processes in thin film growth. It simulates various steps and phenomenon during thin film development, which includes deposition, decomposition, adatom diffusion, nucleation, adatom desorption, island growth and et. al. TFOx has a large amount of input parameters compared to other KMC models to assure the realistic and accuracy, which also makes itself a versatile tool of studying the thin film development. Some application of TFOx in simulating the Cu (100) oxidation behavior will also be discussed in this paper.

Affiliations: 1: Department of Materials Science and Engineering, University of Pittsburgh, PA, 15261; 2: L-3 Communications – Brashear Division, Pittsburgh, PA 15238


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multidiscipline Modeling in Materials and Structures — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation