Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Ballistic Performance of Alumina/S-2 Glass-reinforced Polymer-matrix Composite Hybrid Lightweight Armor Against Armor Piercing (ap) and Non-AP Projectiles

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multidiscipline Modeling in Materials and Structures

The ability of light-weight all fiber-reinforced polymer-matrix composite armor and hybrid composite-based armor hard-faced with ceramic tiles to withstand the impact of a non-Armor-Piercing (non-AP) and AP projectiles is investigated using a transient non-linear dynamics computational analysis. The results obtained confirm experimental findings that the all-composite armor, while being able to successfully defeat non-AP threats, provides very little protection against AP projectiles. In the case of the hybrid armor, it is found that, at a fixed overall areal density of the armor, there is an optimal ratio of the ceramic-to-composite areal densities which is associated with a maximum ballistic armor performance against AP threats.

The results obtained are rationalized using an analysis based on the shock/blast wave reflection and transmission behavior at the hard-face/air, hard-face/backing and backing/air interfaces, projectiles' wear and erosion and the intrinsic properties of the constituent materials of the armor and the projectiles.

Affiliations: 1: Department of Mechanical Engineering Clemson University, Clemson SC 29634; 2: Applied Research Laboratory, Pennsylvania State University 155, ARL Building, University Park, PA 16802; 3: Army Research Laboratory – Survivability Materials Branch, Aberdeen Proving Ground, MD 21005-5069


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multidiscipline Modeling in Materials and Structures — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation