Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Computational Analysis of Mine Blast on a Commercial Vehicle Structure

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multidiscipline Modeling in Materials and Structures

The kinematic response (including plastic deformation, failure initiation and fracture) of a soft-skinned vehicle (represented by a F800 series single-unit truck) to the detonation of a landmine shallow-buried in (either dry or saturated sand) underneath the vehicle's front right wheel is analyzed computationally. The computational analysis included the interactions of the gaseous detonation products and the sand ejecta with the vehicle and the transient non-linear dynamics response of the vehicle. A frequency analysis of the pressure versus time signals and visual observation clearly show the differences in the blast loads resulting from the landmine detonation in dry and saturated sand as well as the associated kinematic response of the vehicle. It is noted that the dominant vehicle structural response to the blast is similar to the first torsional structural mode shape obtained through an eigenvalue analysis of the system. Tailoring the vehicle modal response may result in more desirable modes of failure.

Affiliations: 1: Department of Mechanical Engineering Clemson University, Clemson SC 29634; 2: Army Research Laboratory – Survivability Materials Branch Aberdeen, Proving Ground, MD 21005-5069

10.1163/157361107782106348
/content/journals/10.1163/157361107782106348
dcterms_title,pub_keyword,dcterms_description,pub_author
6
3
Loading
Loading

Full text loading...

/content/journals/10.1163/157361107782106348
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/157361107782106348
Loading

Article metrics loading...

/content/journals/10.1163/157361107782106348
2007-10-01
2016-12-04

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Multidiscipline Modeling in Materials and Structures — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation