Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

The Effects of Frictionless/Frictional Contact Boundary Conditions in Finite Element Modeling of Mandibular Fractures

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multidiscipline Modeling in Materials and Structures

Finite element (FE) modeling of the human dentate mandible is the method of choice currently used for simulating structural fracture analyses in the mandibular region. A finite element model of a parasymphyseal fracture with an internal rigid fixation plate-screw system has been developed to compare the effects of including frictionless/frictional contact boundary conditions at the fracture site. It is common practice to ignore contact boundary conditions in FE modeling of mandibular fractures due to the non-linearities causing increased computational requirements. The stress distributions and displacements of the mandibular fracture region indicate a significant difference resulting from the introduction of realistic contact boundary conditions. These current findings suggest that even though the modeling of extreme situations, i.e. non-contact modeling of unhealed fractures, may provide insight to non-union problems, future mandibular fracture models should include frictional contact boundary conditions. This is in order to capture more realistic behavior of the system to be analyzed.

Affiliations: 1: Mechanical Engineering Dept., University of New Mexico, Albuquerque, NM, USA; 2: Mechanical Engineering Dept., University of New Mexico, Albuquerque, NM, USA;, Email:; 3: Department of Surgery, University of New Mexico, Albuquerque, NM, USA


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multidiscipline Modeling in Materials and Structures — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation