Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Reliability Based Finite Element Analysis of Mechanical Components

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multidiscipline Modeling in Materials and Structures

In a conventional finite element analysis, material properties, dimensions and applied loads are usually defined as deterministic quantities. This simplifying assumption however, is not true in practical applications. Using statistics in engineering problems enables us to consider the effects of the input variables dispersion on the output parameters in an analysis. This provides a powerful tool for better decision making for more reliable design. In this paper, a probabilistic based design is presented which evaluates the sensitivity of a mechanical model to random input variables. To illustrate the effectiveness of this method, a simple bracket is analyzed for stress-strain behavior using commercially available finite element software. Young's modulus, applied pressure and dimensions are considered as random variables with Gaussian distribution and their effects on maximum stress and displacement is evaluated. The finite element results are compared with reliability based theoretical results which show very good agreement. This demonstrates the capability of commercially available software to handle probabilistic approach design.

Affiliations: 1: Faculty of Mechanical Engineering, Babol University of Technology, Babol, Iran


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multidiscipline Modeling in Materials and Structures — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation