Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Wave Propagation in Microstretch Thermoelastic Plate Bordered with Layers of Inviscid Liquid

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Multidiscipline Modeling in Materials and Structures

The propagation of free vibrations in microstretch thermoelastic homogeneous isotropic, thermally conducting plate bordered with layers of inviscid liquid on both sides subjected to stress free thermally insulated and isothermal conditions is investigated in the context of Lord and Shulman (L-S) and Green and Lindsay (G-L) theories of thermoelasticity. The secular equations for symmetric and skew-symmetric wave mode propagation are derived. The regions of secular equations are obtained and short wavelength waves of the secular equations are also discussed. At short wavelength limits, the secular equations reduce to Rayleigh surface wave frequency equations. Finally, the numerical solution is carried out for magnesium crystal composite material plate bordered with water. The dispersion curves for symmetric and skew-symmetric wave modes are computed numerically and presented graphically.

Affiliations: 1: Department of Mathematics, Kurukshetra University, Kurukshetra, Haryana, INDIA; 2: Department of Mathematics, National Institute of Technology, Jalandhar, Punjab, INDIA


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Multidiscipline Modeling in Materials and Structures — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation