Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

On the performance of density functional theory methods in the prediction of the electric polarizability and hyperpolarizability of ozone

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Computing Letters

We report a study of the performance of density functional theory (DFT) methods in the prediction of electric properties for the ozone molecule. We have used a large, flexible basis set for the calculation of the dipole moment and the dipole (hyper)polarizability with the B1LYP, B3LYP, B3P86, B3PW91, G96PW91 and MPW91PW91 methods. The results are compared to high-level, conventional ab initio methods. We rely on a rigorous approach in order to evaluate the proximity and similarity of theoretical descriptions obtained via DFT and conventional ab initio methods. We find that compared to the most accurate ab initio, DFT methods predict reliable dipole polarizabilities and second dipole hyperpolarizabilities for ozone. Agreement is less good for the dipole moment and the first dipole hyperpolarizability. Overall, the performance of the DFT is similar to that of the accurate ab initio methods.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Computing Letters — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation