Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Interaction of Nitric Oxide and Nitric Oxide Dimer with Silver Clusters

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Computing Letters

Study of interaction of NO and (NO)2 molecules with silver clusters has been carried out using the hybrid method S2LYP based on density functional theory (DFT). The role of cluster charge and site of adsorption on N–O stretch frequency, adsorption energy and geometry has been investigated. Four cluster models of different size have been used for simulation of (NO)2 adsorption on Ag{111} surface. The pronounced effect of N–N bond shortening in comparison with gaseous (NO)2 has been found due to adsorption of (NO)2 on silver cluster. This phenomenon is important as possible pathway of N–N bond formation in catalytic fragmentation of NO molecule. The calculations showed that the silver octamer is the best candidate for simulation of formation and fragmentation of (NO)2 on Ag{111} surface within the cluster model.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Computing Letters — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation