Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Electron correlation effects in small iron clusters

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Computing Letters

We present results of first-principles calculations of structural, magnetic, and electronic properties of small Fe clusters. It is shown that, while the lowest-energy isomers of Fe3 and Fe4 obtained in the framework of density functional theory within the generalized gradient approximation (GGA) are characterized by Jahn-Teller-like distortions away from the most regular shapes (which is in agreement with other works), these distortions are reduced when electron correlation effects are considered explicitly as within the GGA+U approach. At the same time, the magnetic moments of the clusters are enhanced with respect to the pure GGA case, resulting in maximal moments (in the sense of Hund's rules) of 4 μB per atom for the ground state structures of Fe3 and Fe4, and a total moment of 18 μB for Fe5. This already happens for moderate values of the Coulomb repulsion parameter U ∼ 2.0 eV and is explained by changes in the electronic structures of the clusters.


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Computing Letters — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation