Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Assessment of the Negentropy Based Stopping Time Criterion in the Diffusive Restoration of Digital Images

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Computing Letters

One method successfully employed to denoise digital images is the diffusive iterative filtering. An important point of this technique is the estimation of the stopping time of the diffusion process. In this paper, we propose a stopping time criterion based on the evolution of the negentropy of the 'noise signal' with the diffusion parameter. The nonlinear diffusive filter implemented with this stopping criterion is evaluated by using several noisy test images with different statistics. Assuming that images are corrupted by additive Gaussian noise, a statistical measure of the Gaussianity can be used to estimate the amount of noise removed from noisy images. In particular, the differential entropy function or, equivalently, the negentropy are robust measures of the Gaussianity. Because of computational complexity of the negentropy function, it is estimated by using an approximation of the negentropy introduced by Hyvärinen in the context of independent component analysis.

Affiliations: 1: Departamento de Matemáatica Aplicada, Universidad Politécnica de Valencia, 46022-Valencia, Spain; 2: Departmento de Ingeniería Química y Nuclear, Universidad Politécnica de Valencia, 46022-Valencia, Spain


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Computing Letters — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation