Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Real Time Dynamics of Hole Propagation in Strongly Correlated Conjugated Molecular Chains: A time-dependent DMRG Study

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Computing Letters

In this paper, we address the role of electron-electron interactions on the velocities of spin and charge transport in one-dimensional systems typified by conjugated polymers. We employ the Hubbard model to model electron-electron interactions. The recently developed technique of time dependent Density Matrix Renormalization Group (tdDMRG) is used to follow the spin and charge evolution in an initial wavepacket described by a hole doped in the ground state of the neutral system. We find that the charge and spin velocities are different in the presence of correlations and are in accordance with results from earlier studies; the charge and spin move together in the noninteracting picture while interaction slows down only the spin velocity. We also note that dimerization of the chain only weakly affects these velocities.

Affiliations: 1: Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore - 560012, India


Full text loading...


Data & Media loading...

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Computing Letters — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation