Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

European bumblebees (Hymenoptera: Bombini)- phylogenetic relationships inferred from DNA sequences

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Insect Systematics & Evolution

The phylogenetics of 40 taxa of European bumblebees were analysed based on PCR amplified and direct sequenced DNA from one region of the mitochondrial gene Cytochrome Oxidase I (1046 bp) and for 26 taxa from two regions in the nuclear gene Elongation Factor 1α (1056 bp). The sequences were aligned to the corresponding sequences in the honey bee. Phylogenetic analyses based on parsimony, as well as maximum likelihood, indicate that the bumblebees can be separated into several well-supported clades. Most of the terminal clades correspond very well with the clades known from former phylogenetic analyses based on morphology and recognized as the subgenera: Mendacibombus, Confusibombus, Psithyrus, Thoracobombus, Megabombus, Rhodobombus, Kallobombus, Alpinobombus, Subterraneobombus, Alpigenobombus, Pyrobombus, Bombus and Melanobombus. All the cuckoo bumblebees form a well-supported clade, the subgenus Psithyrus, within the true bumblebees. All the analyses place Kallobombus as the most basal taxon in contradiction to former analyses. The other deeper nodes of the phylogenetic trees, which are weakly supported, deviate significantly from former published trees - especially the trees based on mtCO-I. Presumably, the reasons are that multiple hits and the strong bias of the bases A and T blur the relationships in the deepest part of the trees. Analyses of the region in mtCO-I show a very strong A+T bias (A+T= 75%), which also indicate preferences in the use of codons with A or T in third positions. In closely related entities, there is only a weak transversion bias (A+T). In the studied regions in EF 1-α, no nucleotide bias is observed. The observed differences in bases between the investigated taxa are relatively small and the gene is too conserved to solve all the questions that the analyses of the deeper nodes using mtCO-I raise.

Affiliations: 1: Zoological Institute, Department of Evolutionary Biology, University of Co- penhagen, Universitetsparken 15, 2100 Copenhagen Denmark (bvpedersen@ zi.ku.dk

Loading

Full text loading...

/content/journals/10.1163/187631202x00208
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/187631202x00208
Loading

Article metrics loading...

/content/journals/10.1163/187631202x00208
2002-01-01
2016-12-04

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Insect Systematics & Evolution — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation