Cookies Policy

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

A Possible Role and Basis of Visual Pathway Selection in Brightness Induction

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Seeing and Perceiving
For more content, see Multisensory Research and Spatial Vision.

It is a well-known fact that the perceived brightness of any surface depends on the brightness of the surfaces that surround it. This phenomenon is termed as brightness induction. Isotropic arrays of multi-scale DoG (Difference of Gaussians) as well as cortical Oriented DoG (ODOG) and extensions thereof, like the Frequency-specific Locally Normalized ODOG (FLODOG) functions have been employed towards prediction of the direction of brightness induction in many brightness perception effects. But the neural basis of such spatial filters is seldom obvious. For instance, the visual information from retinal ganglion cells to such spatial filters, which have been generally speculated to appear at the early stage of cortical processing, are fed by at least three parallel channels viz. Parvocellular (P), Magnocellular (M) and Koniocellular (K) in the subcortical pathway, but the role of such pathways in brightness induction is generally not implicit. In this work, three different spatial filters based on an extended classical receptive field (ECRF) model of retinal ganglion cells, have been approximately related to the spatial contrast sensitivity functions of these three parallel channels. Based on our analysis involving different brightness perception effects, we propose that the M channel, with maximum conduction velocity, may have a special role for an initial sensorial perception. As a result, brightness assimilation may be the consequence of vision at a glance through the M pathway; contrast effect may be the consequence of a subsequent vision with scrutiny through the P channel; and the K pathway response may represent an intermediate situation resulting in ambiguity in brightness perception. The present work attempts to correlate this phenomenon of pathway selection with the complementary nature of these channels in terms of spatial frequency as well as contrast.

Affiliations: 1: Machine Intelligence Unit, and Center for Soft Computing Research, Indian Statistical Institute, 203, B. T. Road, Kolkata 700108, India


Full text loading...


Data & Media loading...

1. Anderson B. L. ( 1997). "A theory of illusory lightness and transparency in monocular and binocular images: the role of computer junctions", Perception Vol 26, 419453.
2. Anderson B. ( 2001). "Contrasting theories of White’s illusion", Perception Vol 30, 14991501.
3. Baumgartner G. ( 1960). "Indirekte Grossenbestimmung der rezeptiven Felder der Retina beim Menschen mittels der Hermannschen Gittertauschung", Pflugers Archiv fur die gesamte Physiologie Vol 272, 2122 (Abstract).
4. Blakeslee B. , McCourt M. E. ( 1997). "Similar mechanisms underlie simultaneous brightness contrast and grating induction", Vision Research Vol 37, 28492869.
5. Blakeslee B. , McCourt M. E. ( 1999). "A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction", Vision Research Vol 39, 43614377.
6. Blakeslee B. , McCourt M. E. ( 2003). "The effect of spatial frequency on the White, shifted White and checkerboard illusions: data and modeling", J. Vision, Vol 3( 9), 422a.
7. Blakeslee B. , McCourt M. E. ( 2004). "A unified theory of brightness contrast and assimilation incorporating oriented multiscale spatial filtering and contrast normalization", Vision Research Vol 44, 24832503.
8. Blakeslee B. , McCourt M. E. ( 2008). "Nearly instantaneous brightness", J. Vision Vol 8, 18.
9. Blakeslee B. , Pasieka W. , McCourt M. E. ( 2005). "Oriented multiscale spatial filtering and contrast normalization: a parsimonious model of brightness induction in a continuum of stimuli including White, Howe and simultaneous brightness contrast", Vision Research Vol 45, 607615.
10. Bowker D. O. ( 1983). "Suprathreshold spatiotemporal response characteristics of the human visual system", J. Optic. Soc. Amer. Vol 73, 436440.
11. Bullier J. ( 2001). "Integrated model of visual processing", Brain Res. Rev. Vol 36, 96107.
12. Croner L. J. , Kaplan E. ( 1995). "Receptive fields of P and M ganglion cells across the primate retina", Vision Research Vol 35, 724.
13. Dacey D. M. , Petersen M. R. ( 1992). "Dendritic field size and morphology of midget and parasol ganglion cells of the human retina", Proc. Nat. Acad. Sci. USA Vol 89, 96669670.
14. De Monasterio F. M. , Gouras P. ( 1975). "Functional properties of ganglion cells of the rhesus monkey retina", J. Physiol. (London) Vol 251, 167195.
15. DeValois R. L. , DeValois K. K. ( 1988). Spatial Vision. Oxford University Press, New York, USA.
16. DeValois R. L. , Pease P. L. ( 1971). "Contours and contrast: responses of monkey lateral geniculate cells to luminance and color figures", Science Vol 171, 694696.
17. De Valois R. L. , Webster M. A. , De Valois K. K. , Lingelbach B. ( 1986). "Temporal properties of brightness and color induction", Vision Research Vol 26, 887897.
18. Enroth-Cugell C. , Robson J. G. ( 1966). "The contrast sensitivity of the retinal ganglion cells of the cat", J. Physiol. (London) Vol 187, 517552.
19. Ferrera V. P. , Nealey T. A. , Maunsell J. R. H. ( 1992). "Mixed parvocellular and mangocellular geniculate signals in visual area V4", Nature Vol 358, 756758.
20. Foley J. M. , McCourt M. E. ( 1985). "Visual grating induction", J. Optic. Soc. Amer. A Vol 2, 12201230.
21. Geier J. , Bernath L. , Hudak M. , Sera L. ( 2008). "Straightness as the main factor of the Hermann grid illusion", Perception Vol 37, 651665.
22. Ghosh K. , Pal S. K. ( 2007). "Explaining and classifying brightness perception illusions by a new receptive field approach", Perception Vol 36, 5455.
23. Ghosh K. , Sarkar S. , Bhaumik K. ( 2005). "A possible mechanism of zero-crossing detection using the concept of extended classical receptive field model of retinal ganglion cells", Biol. Cybernet. Vol 93, 15.
24. Ghosh K. , Sarkar S. , Bhaumik K. ( 2006). "A possible explanation of the low-level brightness–contrast illusions in the light of an extended classical receptive field model of retinal ganglion cells", Biol. Cybernet. Vol 94, 8996.
25. Ghosh K. , Sarkar S. , Bhaumik K. ( 2008). "Retinomorphic image processing", Prog. Brain Res. Vol 168, 175191.
26. Ghosh K. , Sarkar S. , Bhaumik K. ( 2009). "A possible mechanism of stochastic resonance in the light of an extra-classical receptive field model of retinal ganglion cells", Biol. Cybernet. Vol 100, 351359.
27. Gilchrist A. , Kossyfidis C. , Bonato F. , Agostini T. , Cataliotti J. , Li X. , Spehar B. , Annan V. , Economou E. ( 1999). "An anchoring theory of lightness perception", Psychol. Rev. Vol 106, 795834.
28. Gouras P. ( 1969). "Antidromic responses of orthodromically identified ganglion cells in monkey retina", J. Physiol. Vol 204, 407419.
29. Gregory R. L. ( 1973). "Seeing as thinking", Times Literary Suppl.June 23.
30. Grossberg S. ( 1994). "3-D vision and figure–ground separation by visual cortex", Percept. Psychophys. Vol 55, 48120.
31. Grossberg S. , Hong S. ( 2006). "A neural model of surface perception: lightness, anchoring, and filling-in", Spatial Vision Vol 19, 263321.
32. Grossberg S. , Todorovic D. ( 1988). "Neural dynamics of 1-D and 2-D brightness perception", Percept. Psychophys. Vol 43, 241277.
33. Hartline H. K. , Wager H. , Ratliff F. ( 1956). "Inhibition in the eye of limulus", J. Gen. Physiol. Vol 39, 651673.
34. Heinemann E. G. ( 1955). "Simultaneous brightness induction as a function of inducing and testfield luminances", J. Exper. Psychol. Vol 50, 8996.
35. von Helmholtz H. ( 1909–1911). Handbuch der physiologischen Optik. (Handbook of Physiological Optics), 3rd edn. Voss, Hamburg, Germany.
36. Helson H. ( 1963). "Studies of anomalous contrast and assimilation", J. Optic. Soc. Amer. Vol 53, 179184.
37. Hermann L. ( 1870). "Eine Ersheinung des simultanen Contrastes", Pflugers Archiv fur die gesamte Physiologie Vol 3, 1315.
38. Hotchstein S. , Ahissar M. ( 2002). "View from the top: hierarchies and reverse hierarchies in the visual system", Neuron Vol 36, 791804.
39. Hong S. W. , Shevell S. K. ( 2004). "Brightness contrast and assimilation from patterned inducing backgrounds", Vision Research Vol 44, 3543.
40. Howe P. D. L. ( 2001). "A comment on the Anderson (1997), the Todorovic (1997), and the Ross and Pessoa (2000) explanations of White’s effect", Perception Vol 30, 10231026.
41. Huang X. , Paradiso M. A. ( 2008). "V1 response timing and surface filling-in", J. Neurophysiol. Vol 100, 539547.
42. Ikeda H. , Wright M. J. ( 1972). "Functional organization of the periphery effect in retinal ganglion cells", Vision Research Vol 12, 18571879.
43. Jameson D. ( 1985). "Opponent-colours theory in the light of physiological findings", in: Central and Peripheral Mechanisms of Colour Vision, Ottoson D. , Zeki S. (Eds), pp. 83102. Macmillan, London, UK.
44. Kandel E. R. , Schwartz J. H. , Jessell T. M. ( 2000). Principles of Neural Science, International edn. McGraw-Hill, New York, USA, pp. 523545.
45. Kaplan E. , Shapley R. M. ( 1982). "X and Y cells in the lateral geniculate nucleus of macaque monkeys", J. Physiol. Vol 330, 125143.
46. Kingdom F. A. A. , Moulden B. ( 1992). "A multi-channel approach to brightness coding", Vision Research Vol 32, 15651582.
47. Lennie P. ( 1993). "Roles of M and P pathways", in: Contrast Sensitivity, Shapley R. , Lam D. M. (Eds). The MIT Press, Cambridge, MA, USA.
48. Malpeli J. G. , Baker F. H. ( 1975). "The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta ", J. Compar. Neurol. Vol 161, 569594.
49. Maunsell J. H. , Nealey T. A. , DePriest D. D. ( 1990). "Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey", J. Neurosci. Vol 10, 33233334.
50. McCourt M. E. ( 1982). "A spatial frequency dependent grating-induction effect", Vision Research Vol 22, 119134.
51. Merigan W. H. , Maunsell J. R. H. ( 1990). "Macaque vision after magnocellular lateral geniculate lesions", Visual Neurosci. Vol 5, 347352.
52. Merigan W. H. , Maunsell J. R. H. ( 1993). "How parallel are the primate visual pathways?" Ann. Rev. Neurosci. Vol 16, 369402.
53. Merigan W. H. , Katz L. M. , Maunsell J. H. R. ( 1991). "The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys", J. Neurosci. Vol 11, 9941001.
54. Moulden B. , Kingdom F. A. A. ( 1989). "White’s effect: a dual mechanism", Vision Research Vol 29, 12451259.
55. Newsome W. T. , Wurtz R. H. , Dursteler M. R. , Mikami A. ( 1985). "Deficits in visual motion processing, following ibotenic acid lesions of the middle temporal visual area", J. Neurosci. Vol 5, 825840.
56. Nowak L. G. , Munk M. H. J. , Girard P. , Bullier J. ( 1995). "Visual latencies in areas V1 and V2 of the macaque monkey", Visual Neurosci. Vol 12, 371384.
57. Palmer S. E. ( 1999). Vision Science: Photons to Phenomenology, pp.  115118. MIT Press, Cambridge, MA, USA.
58. Passaglia C. L. , Enroth-Cugell C. , Troy J. B. ( 2001). "Effects of remote stimulation on the mean firing rate of cat retinal ganglion cells", J. Neurosci. Vol 21, 57945803.
59. Ratliff F. ( 1965). Mach Bands: Quantitative Studies on Neural Networks in the Retina, pp.  3761. Holden-Day, San Francisco, CA, USA.
60. Ripamonti C. , Gerbino W. ( 2001). "Classical and inverted White’s effects", Perception Vol 30, 467488.
61. Robinson A. E. , de Sa V. R. ( 2008). "Brief presentations reveal the temporal dynamics of brightness induction and White’s illusion", Vision Research Vol 48, 23702381.
62. Robinson A. E. , Hammon P. S. , de Sa V. R. ( 2007). "Explaining brightness illusions using spatial filtering and local response normalization", Vision Research Vol 47, 16311644.
63. Rock I. ( 1997). Indirect Perception. MIT Press, Cambridge, MA, USA.
64. Rodieck R. W. , Stone J. ( 1965). "Analysis of receptive fields of cat retinal ganglion cells", J. Neurophysiol. Vol 28, 833849.
65. Ross W. D. , Pessoa L. ( 2000). "Lightness from contrast: a selective integration model", Percept. Psychophys. Vol 62, 11601181.
66. Rossi A. F. , Paradiso M. A. ( 1996). "Temporal limits of brightness induction and mechanism of brightness perception", Vision Research Vol 36, 13911398.
67. Schiller P. H. , Carvey C. E. ( 2005). "The Hermann grid illusion revisited", Perception Vol 34, 13751397.
68. Shou T. , Wang W. , Yu H. ( 2000). "Orientation biased extended surround of the receptive field of cat retinal ganglion cells", Neuroscience Vol 98, 207212.
69. Silveira L. C. L. , Perry V. H. ( 1991). "The topography of magnocellular projecting ganglion cells (M ganglion cells) in the primate retina", Neuroscience Vol 40, 217237.
70. Solomon S. G. , White A. J. R. , Martin P. R. ( 2002). "Extraclassical receptive field properties of parvocellular, magnocellular and koniocellular cells in the primate lateral geniculate nucleus", J. Neurosci. Vol 22, 338349.
71. Solomon S. G. , Lee B. , Sun H. ( 2006). "Suppressive surrounds and contrast gain in magnocellular-pathway retinal ganglion cells of macaque", J. Neurosci. Vol 26, 87158726.
72. Spehar B. , Gilchrist A. , Arend L. ( 1995). "The critical role of relative luminance relations in White’s effect and grating induction", Vision Research Vol 35, 26032614.
73. Todorovic D. ( 1997). "Lightness and junctions", Perception Vol 26, 379395.
74. Ungerleider L. G. , Mishkin M. ( 1982). "Two cortical visual systems", in: The Analysis of Visual Behavior, Ingle D. J. , Mansfield R. J. W. , Goodale M. S. (Eds), pp. 5486. MIT Press, Cambridge, MA, USA.
75. Watanabe M. , Rodieck R. W. ( 1989). "Parasol and midget ganglion cells of the primate retina", J. Compar. Neurol. Vol 289, 434454.
76. Werner J. M. , Chalupa L. M. ( 2003). The Visual Neurosciences. MIT Press, Cambridge, MA, USA.
77. White M. ( 1979). "A new effect of pattern on perceived lightness", Perception Vol 8, 413416.
78. White M. , White T. ( 1985). "Counterphase lightness induction", Vision Research Vol 25, 13311335.
79. Wielaard J. , Sajda P. ( 2007). "Dependence of response properties on sparse connectivity in a spiking neuron model of the lateral geniculate nucleus", J. Neurophysiol. Vol 98, 32923308.
80. Xu X. , Jennifer M. I. , Allison J. D. , Boyd J. D. , Bonds A. B. , Cassagrande V. A. ( 2001). "A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey ( Aotus trivirgatus)", J. Physiol. Vol 531, 203218.
81. Yu Y. , Yamauchi T. , Choe Y. ( 2004). "Explaining low-level brightness-contrast illusions using disinhibition. Biologically inspired approaches to advanced information technology", LNCS Vol 3141, 166175.
82. Zaidi Q. , Spehar B. , Shy M. ( 1997). "Induced effects of background and foregrounds in three-dimensional configurations: the role of T-junctions", Perception Vol 26, 395408.

Article metrics loading...



Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
    Seeing and Perceiving — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation