Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Full Access Temporal rate adaptation transfers cross-modally at a subconscious level

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Temporal rate adaptation transfers cross-modally at a subconscious level

  • HTML
  • PDF
Add to Favorites
You must be logged in to use this functionality

image of Seeing and Perceiving
For more content, see Multisensory Research and Spatial Vision.

In an earlier study, we demonstrated that the temporal rate adaptation effect can be transferred from audition to vision and vice versa. However, it was unclear whether this effect was due to a top-down cognitive process, or rather to an earlier calibration process which is stimulus-driven and automatic. We therefore examined the effect of interocular masking of the adapting stimuli on the temporal rate adaptation and its cross-modal transfer from vision to audition (VA). Participants were trained, using feedback, to classify repetitive auditory stimuli presented at a range of frequencies (3.25–4.75 Hz) as fast or slow (as compared to the average frequency of 4 Hz). Afterwards, subjects were repeatedly exposed to visual stimuli at a specific rate (3 or 5 Hz). This adaptation stimulus was masked by continuous flash suppression (CFS). During CFS, a stimulus presented to one eye can be suppressed from awareness by a stream of constantly changing images in the other eye. To test whether adaptation resulted from this less visible exposure, participants then performed the same task as in the training, but without feedback. Test and adaptation tasks were presented in 20 alternating blocks. A comparison of the pre- and post-adaptation responses showed cross-modal changes in subjects’ perception of temporal rate. Adaptation to the masked 5 Hz (3 Hz) stimuli led to subsequent stimuli seeming slower (faster) than they had before adaptation. Since the adaptation stimuli were mostly masked by CFS, the results suggest that temporal rate adaptation and its cross-modal transfer occur mostly at a subconscious level.

Affiliations: 1: 1California Institute of Technology, US; 2: 2Occidental College, US

In an earlier study, we demonstrated that the temporal rate adaptation effect can be transferred from audition to vision and vice versa. However, it was unclear whether this effect was due to a top-down cognitive process, or rather to an earlier calibration process which is stimulus-driven and automatic. We therefore examined the effect of interocular masking of the adapting stimuli on the temporal rate adaptation and its cross-modal transfer from vision to audition (VA). Participants were trained, using feedback, to classify repetitive auditory stimuli presented at a range of frequencies (3.25–4.75 Hz) as fast or slow (as compared to the average frequency of 4 Hz). Afterwards, subjects were repeatedly exposed to visual stimuli at a specific rate (3 or 5 Hz). This adaptation stimulus was masked by continuous flash suppression (CFS). During CFS, a stimulus presented to one eye can be suppressed from awareness by a stream of constantly changing images in the other eye. To test whether adaptation resulted from this less visible exposure, participants then performed the same task as in the training, but without feedback. Test and adaptation tasks were presented in 20 alternating blocks. A comparison of the pre- and post-adaptation responses showed cross-modal changes in subjects’ perception of temporal rate. Adaptation to the masked 5 Hz (3 Hz) stimuli led to subsequent stimuli seeming slower (faster) than they had before adaptation. Since the adaptation stimuli were mostly masked by CFS, the results suggest that temporal rate adaptation and its cross-modal transfer occur mostly at a subconscious level.

Loading

Full text loading...

/deliver/18784763/25/0/18784763_025_00_S027_text.html;jsessionid=SZoedtRNIyKXc7AU8btoYUtl.x-brill-live-02?itemId=/content/journals/10.1163/187847612x646523&mimeType=html&fmt=ahah
/content/journals/10.1163/187847612x646523
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/187847612x646523
Loading
Loading

Article metrics loading...

/content/journals/10.1163/187847612x646523
2012-01-01
2016-12-07

Sign-in

Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation