Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Full Access Multisensory objects and the orienting of spatial attention

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Multisensory objects and the orienting of spatial attention

  • HTML
  • PDF
Add to Favorites
You must be logged in to use this functionality

image of Seeing and Perceiving
For more content, see Multisensory Research and Spatial Vision.

The presentation of an auditory stimulus semantically-congruent with a visual element of a multi-objects display can enhance processing of that element. Here we used multisensory objects (MO) as non-informative cues in a spatial cueing paradigm, aiming to directly assess the interplay between MO integration and spatial attention. We presented two pictures (e.g., left — dog, right — cat) plus a central sound (e.g., a dog’s bark) that defined the location of the MO (left, in this example). This was followed by a target (a Gabor patch) either at the MO location or in the opposite hemifield. Subjects discriminated the orientation of the Gabor, while ignoring all task-irrelevant pictures and sounds. Further, we manipulated the task requirements including ‘easy’ or ‘difficult’ discrimination (Gabor tilt = ±5° or ±10°), and by presenting either a single unilateral Gabor (Exp. 1, ‘low’ competition) or two Gabors bilaterally (red and blue, with the target now defined by colour; Exp. 2, ‘high’ competition). Functional imaging data revealed activation of frontal regions when the target was presented on the opposite side of the MO (invalid trials). The frontal eye-fields activated irrespective of task requirements, while the inferior frontal gyrus activated only when the MO-cue was invalid and competition was low (Exp. 1 only). These findings show that MOs automatically affect the distribution of spatial attention, and that re-orienting operations on invalid trials activate dorsal and ventral frontal areas depending on top-down task constraints. Overall, the results are consistent with the hypothesis linking the integration of multisensory objects with biases of spatial attention.

Affiliations: 1: 1Neuroimaging Laboratory, Santa Lucia Foundation Rome, IT

The presentation of an auditory stimulus semantically-congruent with a visual element of a multi-objects display can enhance processing of that element. Here we used multisensory objects (MO) as non-informative cues in a spatial cueing paradigm, aiming to directly assess the interplay between MO integration and spatial attention. We presented two pictures (e.g., left — dog, right — cat) plus a central sound (e.g., a dog’s bark) that defined the location of the MO (left, in this example). This was followed by a target (a Gabor patch) either at the MO location or in the opposite hemifield. Subjects discriminated the orientation of the Gabor, while ignoring all task-irrelevant pictures and sounds. Further, we manipulated the task requirements including ‘easy’ or ‘difficult’ discrimination (Gabor tilt = ±5° or ±10°), and by presenting either a single unilateral Gabor (Exp. 1, ‘low’ competition) or two Gabors bilaterally (red and blue, with the target now defined by colour; Exp. 2, ‘high’ competition). Functional imaging data revealed activation of frontal regions when the target was presented on the opposite side of the MO (invalid trials). The frontal eye-fields activated irrespective of task requirements, while the inferior frontal gyrus activated only when the MO-cue was invalid and competition was low (Exp. 1 only). These findings show that MOs automatically affect the distribution of spatial attention, and that re-orienting operations on invalid trials activate dorsal and ventral frontal areas depending on top-down task constraints. Overall, the results are consistent with the hypothesis linking the integration of multisensory objects with biases of spatial attention.

Loading

Full text loading...

/deliver/18784763/25/0/18784763_025_00_S084_text.html;jsessionid=tTAs1Qa5hxgAOfwDPfXbZp1t.x-brill-live-02?itemId=/content/journals/10.1163/187847612x647090&mimeType=html&fmt=ahah
/content/journals/10.1163/187847612x647090
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/187847612x647090
Loading
Loading

Article metrics loading...

/content/journals/10.1163/187847612x647090
2012-01-01
2016-12-06

Sign-in

Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation