Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Full Access TMS entrainment of pre-stimulus oscillatory activity in tactile perception

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

TMS entrainment of pre-stimulus oscillatory activity in tactile perception

  • HTML
  • PDF
Add to Favorites
You must be logged in to use this functionality

image of Seeing and Perceiving
For more content, see Multisensory Research and Spatial Vision.

It is widely recognized that oscillatory activity plays an important functional role in neural systems. Decreases in alpha (∼10 Hz) EEG/MEG activity in the parietal cortex correlate with the deployment of spatial attention controlateral to target location in visual, auditory and tactile domains. Recently, repetitive Transcranial Magnetic Stimulation (rTMS) has been successfully applied to entrain a specific frequency at the parietal cortex (IPS) and the visual cortex. A short burst of 10 Hz rTMS impaired contralateral visual target detection and improved it ipsilaterally, compared to other control frequencies. This finding suggests a causal role of rhythmic activity in the alfa range in perception. The aim of the present study is to address whether entraining alpha frequency in the IPS plays a role in tactile orienting, indicating similarities between senses (vision and touch) in the communication between top-down (parietal) and primary sensory areas (V1 or S1). We applied rhythmic TMS at 10 and 20 Hz to the (right or left) IPS and S1, immediately before a masked vibrotactile target stimulus (present in 50% of the trials) to the left or right hand. Preliminary results lean towards the consequential effects of entraining alpha frequency into IPS for tactile detection such that it decreases tactile perception contralaterally and increases it ipsilaterally, compared to Beta frequency.

Affiliations: 1: 1Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona, ES

It is widely recognized that oscillatory activity plays an important functional role in neural systems. Decreases in alpha (∼10 Hz) EEG/MEG activity in the parietal cortex correlate with the deployment of spatial attention controlateral to target location in visual, auditory and tactile domains. Recently, repetitive Transcranial Magnetic Stimulation (rTMS) has been successfully applied to entrain a specific frequency at the parietal cortex (IPS) and the visual cortex. A short burst of 10 Hz rTMS impaired contralateral visual target detection and improved it ipsilaterally, compared to other control frequencies. This finding suggests a causal role of rhythmic activity in the alfa range in perception. The aim of the present study is to address whether entraining alpha frequency in the IPS plays a role in tactile orienting, indicating similarities between senses (vision and touch) in the communication between top-down (parietal) and primary sensory areas (V1 or S1). We applied rhythmic TMS at 10 and 20 Hz to the (right or left) IPS and S1, immediately before a masked vibrotactile target stimulus (present in 50% of the trials) to the left or right hand. Preliminary results lean towards the consequential effects of entraining alpha frequency into IPS for tactile detection such that it decreases tactile perception contralaterally and increases it ipsilaterally, compared to Beta frequency.

Loading

Full text loading...

/deliver/18784763/25/0/18784763_025_00_S142_text.html;jsessionid=vEKiDGo8cNYN6mISmqJul_na.x-brill-live-03?itemId=/content/journals/10.1163/187847612x647838&mimeType=html&fmt=ahah
/content/journals/10.1163/187847612x647838
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/187847612x647838
Loading
Loading

Article metrics loading...

/content/journals/10.1163/187847612x647838
2012-01-01
2016-12-03

Sign-in

Can't access your account?
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation