Cookies Policy
X

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies.

I accept this policy

Find out more here

Depth of Field Affects Perceived Depth-width Ratios in Photographs of Natural Scenes

No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.

Brill’s MyBook program is exclusively available on BrillOnline Books and Journals. Students and scholars affiliated with an institution that has purchased a Brill E-Book on the BrillOnline platform automatically have access to the MyBook option for the title(s) acquired by the Library. Brill MyBook is a print-on-demand paperback copy which is sold at a favorably uniform low price.

Access this article

+ Tax (if applicable)
Add to Favorites
You must be logged in to use this functionality

image of Seeing and Perceiving
For more content, see Multisensory Research and Spatial Vision.

The aim of the study was to find out how much influence depth of field has on the perceived ratio of depth and width in photographs of natural scenes. Depth of field is roughly defined as the distance range that is perceived as sharp in the photograph. Four different semi-natural scenes consisting of a central and two flanking figurines were used. For each scene, five series of photos were made, in which the distance in depth between the central figurine and the flanking figurines increased. These series of photographs had different amounts of depth of field. In the first experiment participants adjusted the position of the two flanking figurines relative to a central figurine, until the perceived distance in the depth dimension equaled the perceived lateral distance between the two flanking figurines. Viewing condition was either monocular or binocular (non-stereo). In the second experiment, the participants did the same task but this time we varied the viewing distance. We found that the participants’ depth/width settings increased with increasing depth of field. As depth of field increased, the perceived depth in the scene was reduced relative to the perceived width. Perceived depth was reduced relative to perceived width under binocular viewing conditions compared to monocular viewing conditions. There was a greater reduction when the viewing distance was increased. As photographs of natural scenes contain many highly redundant or conflicting depth cues, we conclude therefore that local image blur is an important cue to depth. Moreover, local image blur is not only taken into account in the perception of egocentric distances, but also affects the perception of depth within the scene relative to lateral distances within the scene.

Affiliations: 1: Interactive Intelligence Group/Perceptual Intelligence Lab, Department of Interactive Systems, Faculty of EEMCS, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands

Loading

Full text loading...

/content/journals/10.1163/18784763-00002400
Loading

Data & Media loading...

http://brill.metastore.ingenta.com/content/journals/10.1163/18784763-00002400
Loading

Article metrics loading...

/content/journals/10.1163/18784763-00002400
2012-01-01
2016-12-06

Sign-in

Can't access your account?
  • Tools

  • Add to Favorites
  • Printable version
  • Email this page
  • Subscribe to ToC alert
  • Get permissions
  • Recommend to your library

    You must fill out fields marked with: *

    Librarian details
    Your details
    Why are you recommending this title?
    Select reason:
     
    Seeing and Perceiving — Recommend this title to your library
  • Export citations
  • Key

  • Full access
  • Open Access
  • Partial/No accessInformation